Estimation of total leaf area in perennial plants using image analysis

One feature of most horticultural crop plants that is biologically relevant to their yield and productivity is total leaf area. However, direct methods of estimation of the leaf area cause damage to the plants, whereas indirect methods such as based on light measurement, demand accuracy in the setup of the measurement procedure, which is specific to each crop. Coffee is one of the most important perennial plants related to worldwide trade, and this demands some ability to estimate the productivity of the crop, as well as all the perennial plants involved in production of agricultural products. This study aims to build a model based on indirect measures to estimate the leaf area in coffee plants using image analysis. Two models were evaluated, one based on the height and width of the canopies, and other based on the area of the digital image of a tree. The results of the models have been compared with the real area of the leaves using the destructive approach with measurement of area of all the leaves using a digital scanner. Comparisons between the models and the real values indicated values of adjusted R2 of about 0.82 with a model using the height and the width values, and about 0.91 in the second model which used the area projection. The robustness of the model using the height and the width values were tested using data presented in the literature to other cultivars and achieved R2 = 0.54 with an outlier point and 0.91 without it.

[1]  Rafael C. Gonzales,et al.  Digital Image Processing -3/E. , 2012 .

[2]  N. Beltrão,et al.  Development of a ruler for measurements of leaf area of the cotton plant. , 2010 .

[3]  N. Beltrão,et al.  Desenvolvimento de uma rgua para medidas de rea foliar do algodoeiro , 2010 .

[4]  Rafael O. Faria,et al.  Evaluation of the influence of laser in live biological materials , 2009 .

[5]  Rafael C. González,et al.  Digital image processing, 3rd Edition , 2008 .

[6]  Hirokazu Fukuda,et al.  Non-destructive sensing and its inverse model for canopy parameters using texture analysis and artificial neural network , 2007 .

[7]  M. Simões,et al.  Utilização de fotografia hemisférica na determinação do índice de área foliar de oliveiras jovens (Olea europaea L.) , 2007 .

[8]  Wulf Diepenbrock,et al.  Using Digital Image Analysis to Describe Canopies of Winter Oilseed Rape (Brassica napus L.) during Vegetative Developmental Stages , 2006 .

[9]  H. Carvalho,et al.  Avaliacao de cultivares e linhagens de cafe (Coffea arabica L.) nas condicoes de cerrado em Uberlandia-MG , 2006 .

[10]  Alvin R. Womac,et al.  Interactive computer software development for leaf area measurement , 2006 .

[11]  L. A. C. Jorge,et al.  Estimativa da área foliar em milho através de análise de imagens , 2010 .

[12]  Hans Jørgen Andersen,et al.  Geometric plant properties by relaxed stereo vision using simulated annealing , 2005 .

[13]  Giovanni Francisco Rabelo,et al.  Laser speckle techniques in quality evaluation of orange fruits , 2005 .

[14]  Luiz Roberto Angelocci,et al.  Estimativa da área foliar de plantas de lima ácida 'Tahiti' usando métodos não-destrutivos , 2005 .

[15]  P. C. Sentelhas,et al.  Estimao da rea foliar do algodoeiro por meio de dimenses e massa das folhas , 2005 .

[16]  Min Zhang,et al.  Effects of different varieties and shelf storage conditions of chicory on deteriorative color changes using digital image processing and analysis , 2003 .

[17]  J. I. Lizaso,et al.  A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves , 2003 .

[18]  UTILIZACIÓN DEL PROCESAMIENTO DE IMÁGENES PARA DETERMINAR LA SEVERIDAD DE LA MANCHA DE HIERRO , EN HOJAS DE CAFÉ , 2003 .

[19]  A. H. Maia,et al.  Anlise comparativa de mtodos de estimativa de rea foliar em cafeeiro , 2002 .

[20]  D. D. Neto,et al.  Equações para a estimativa do índice de área foliar do cafeeiro , 2002 .

[21]  John C. Russ,et al.  The image processing handbook (3. ed.) , 1995 .