Performance Analysis of Distributed MAC Protocols for Wireless Networks

How to improve the radio resource utilization and provide better quality-of-service (QoS) is an everlasting challenge to the designers of wireless networks. As an indispensable element of the solution to the above task, medium access control (MAC) protocols coordinate the stations and resolve the channel access contentions so that the scarce radio resources are shared fairly and efficiently among the participating users. With a given physical layer, a properly designed MAC protocol is the key to desired system performance, and directly affects the perceived QoS of end users. Distributed random access protocols are widely used MAC protocols in both infrastructure-based and infrastructureless wireless networks. To understand the characteristics of these protocols, there have been enormous efforts on their performance study by means of analytical modeling in the literature. However, the existing approaches are inflexible to adapt to different protocol variants and traffic situations, due to either many unrealistic assumptions or high complexity. In this thesis, we propose a simple and scalable generic performance analysis framework for a family of carrier sense multiple access with collision avoidance (CSMA/ CA) based distributed MAC protocols, regardless of the detailed backoff and channel access policies, with more realistic and fewer assumptions. It provides a systematic approach to the performance study and comparison of diverse MAC protocols in various situations. Developed from the viewpoint of a tagged station, the proposed framework focuses on modeling the backoff and channel access behavior of an individual station. A set of fixed point equations is obtained based on a novel three-level renewal process concept, which leads to the fundamental MAC performance metric, average frame service time. With this result, the important network saturation throughput is then obtained straightforwardly. The above distinctive approach makes the proposed analytical framework unified for both saturated and unsaturated stations.

[1]  Bob O'Hara,et al.  Medium access control (MAC) , 2005 .

[2]  Chuan Heng Foh,et al.  Comments on IEEE 802.11 saturation throughput analysis with freezing of backoff counters , 2005, IEEE Communications Letters.

[3]  G. Bianchi,et al.  IEEE 802.11-saturation throughput analysis , 1998, IEEE Communications Letters.

[4]  Denis C. Daly,et al.  Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: modeling and improvement perspectives , 2005, Design, Automation and Test in Europe.

[5]  Lawrence G. Roberts,et al.  ALOHA packet system with and without slots and capture , 1975, CCRV.

[6]  Savo Glisic Advanced Wireless Communications: 4G Technologies , 2004 .

[7]  Yang Xiao,et al.  Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs , 2005, IEEE Transactions on Wireless Communications.

[8]  L. Kleinrock,et al.  Packet Switching in Radio Channels : Part Il-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution , 2022 .

[9]  Yu Cheng,et al.  A Generic Framework for Modeling MAC Protocols in Wireless Broadband Access Networks , 2007, IEEE Network.

[10]  K. Tokuda,et al.  DOLPHIN for inter-vehicle communications system , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[11]  Attahiru Sule Alfa,et al.  Exact distribution of access delay in IEEE 802.11 DCF MAC , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[12]  Hannes Hartenstein,et al.  Broadcast reception rates and effects of priority access in 802.11-based vehicular ad-hoc networks , 2004, VANET '04.

[13]  Uyless Black Voice Over IP , 2001 .

[14]  Zongkai Yang,et al.  Performance analysis and service differentiation in IEEE 802.11 WLAN , 2003, 28th Annual IEEE International Conference on Local Computer Networks, 2003. LCN '03. Proceedings..

[15]  Fan Yang,et al.  Modeling path capacity in multi-hop IEEE 802.11 networks for QoS services , 2007, IEEE Transactions on Wireless Communications.

[16]  Martin Heusse,et al.  Performance anomaly of 802.11b , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[17]  Carl Wijting,et al.  Mesh WLAN networks: concept and system design , 2006, IEEE Wireless Communications.

[18]  Thierry Turletti,et al.  Modeling and analysis of slow CW decrease IEEE 802.11 WLAN , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[19]  Jennifer C. Hou,et al.  Provisioning Quality Controlled Medium Access in UltraWideBand-Operated WPANs , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[20]  Fouad A. Tobagi,et al.  Throughput analysis of IEEE 802.11 wireless LANs using an average cycle time approach , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[21]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[22]  Shengming Jiang,et al.  A simple distributed PRMA for MANETs , 2002, IEEE Trans. Veh. Technol..

[23]  Myung J. Lee,et al.  Emerging standards for wireless mesh technology , 2006, IEEE Wireless Communications.

[24]  Jeffrey G. Andrews,et al.  Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential , 2005, IEEE Communications Magazine.

[25]  Eitan Altman,et al.  New Insights From a Fixed-Point Analysis of Single Cell IEEE 802.11 WLANs , 2007, IEEE/ACM Transactions on Networking.

[26]  Francesco De Pellegrini,et al.  Statistical characterization of the service time in saturated IEEE 802.11 networks , 2005, IEEE Communications Letters.

[27]  Mischa Schwartz,et al.  Broadband integrated networks , 1996 .

[28]  Yang Xiao,et al.  IEEE 802.11n: enhancements for higher throughput in wireless LANs , 2005, IEEE Wireless Communications.

[29]  Biplab Sikdar,et al.  Queueing analysis and delay mitigation in IEEE 802.11 random access MAC based wireless networks , 2004, IEEE INFOCOM 2004.

[30]  Oliver W. W. Yang,et al.  Delay analysis of the IEEE 802.11 DCF , 2003, 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003..

[31]  J. J. Garcia-Luna-Aceves,et al.  Delay analysis of IEEE 802.11 in single-hop networks , 2003, 11th IEEE International Conference on Network Protocols, 2003. Proceedings..

[32]  Jelena V. Misic,et al.  Performance of IEEE 802.15.4 beacon enabled PAN with uplink transmissions in non-saturation mode - access delay for finite buffers , 2004, First International Conference on Broadband Networks.

[33]  Brahim Bensaou,et al.  Performance analysis of IEEE 802.11e contention-based channel access , 2004, IEEE Journal on Selected Areas in Communications.

[34]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[35]  Vasileios Vitsas,et al.  Performance Analysis of the Advanced Infrared (AIr) CSMA/CA MAC Protocol for Wireless LANs , 2003, Wirel. Networks.

[36]  Sumit Roy,et al.  Performance of CDMA slotted ALOHA multiple access with multiuser detection , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[37]  Periklis Chatzimisios,et al.  IEEE 802.11 packet delay-a finite retry limit analysis , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[38]  Qiang Ni,et al.  Performance analysis and enhancements for IEEE 802.11e wireless networks , 2005, IEEE Network.

[39]  Periklis Chatzimisios,et al.  IEEE 802.11 Wireless LANs: Performance Analysis and Protocol Refinement , 2005, EURASIP J. Wirel. Commun. Netw..

[40]  Marco Conti,et al.  Optimal capacity of p-persistent CSMA protocols , 2003, IEEE Communications Letters.

[41]  Claude Castelluccia,et al.  Differentiation mechanisms for IEEE 802.11 , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[42]  Yan Gao,et al.  Determining the end-to-end throughput capacity in multi-hop networks: methodology and applications , 2006, SIGMETRICS '06/Performance '06.

[43]  Thierry Turletti,et al.  Performance analysis under finite load and improvements for multirate 802.11 , 2005, Comput. Commun..

[44]  Dipankar Raychaudhuri,et al.  Performance evaluation of slotted ALOHA with generalized retransmission backoff , 1990, IEEE Trans. Commun..

[45]  Kai-Yeung Siu,et al.  Supporting rate guarantee and fair access for bursty data traffic in W-CDMA , 2001, IEEE J. Sel. Areas Commun..

[46]  David Malone,et al.  Modeling the 802.11 distributed coordination function in non-saturated conditions , 2005, IEEE Communications Letters.

[47]  Haitao Wu,et al.  Performance of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and enhancement , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[48]  Suresh Subramaniam,et al.  A Finite Load Analytical Model for the IEEE 802.11 Distributed Coordination Function MAC , 2003 .

[49]  Pravin Varaiya,et al.  Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer , 2008, IEEE Trans. Wirel. Commun..

[50]  Sunghyun Choi,et al.  IEEE 802.11 e contention-based channel access (EDCF) performance evaluation , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[51]  Shivendra S. Panwar,et al.  Performance analysis and a proposed improvement for the IEEE 802.15.4 contention access period , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[52]  Kaiji Mukumoto,et al.  Analysis of an integrated voice and data transmission system using packet reservation multiple access , 1994 .

[53]  Xuemin Shen,et al.  Performance Analysis of IEEE 802.11 DCF with Heterogeneous Traffic , 2007, 2007 4th IEEE Consumer Communications and Networking Conference.

[54]  Bhaskar Ramamurthi,et al.  Packet reservation multiple access for local wireless communications , 1989, IEEE Trans. Commun..

[55]  Dajiang He,et al.  Simulation study of IEEE 802.11e EDCF , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[56]  David Malone,et al.  Experimental evaluation of TCP performance and fairness in an 802.11e test-bed , 2005, E-WIND '05.

[57]  Hongqiang Zhai,et al.  Performance analysis of IEEE 802.11 MAC protocols in wireless LANs , 2004, Wirel. Commun. Mob. Comput..

[58]  Jeong Geun Kim,et al.  Investigation of the IEEE 802.11 medium access control (MAC) sublayer functions , 1997, Proceedings of INFOCOM '97.

[59]  Asrar U. H. Sheikh,et al.  A unified approach to analyze multiple access protocols for buffered finite users , 2004, J. Netw. Comput. Appl..

[60]  Abraham O. Fapojuwo,et al.  A new call admission control method for providing desired throughput and delay performance in IEEE802.11e wireless LANs , 2007, IEEE Transactions on Wireless Communications.

[61]  Michael Devetsikiotis,et al.  Designing improved MAC packet schedulers for 802.11e WLAN , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[62]  Malathi Veeraraghavan,et al.  Support of voice services in IEEE 802.11 wireless LANs , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[63]  Desmond P. Taylor,et al.  Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation , 2007 .

[64]  L. Kleinrock,et al.  Packet Switching in Radio Channels: Part I - Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics , 1975, IEEE Transactions on Communications.

[65]  A.N. Zaki,et al.  Throughput analysis of IEEE 802.11 DCF under finite load traffic , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..

[66]  Randolph Nelson,et al.  Probability, Stochastic Processes, and Queueing Theory , 1995 .

[67]  Chung-Ju Chang,et al.  Slot allocation for an integrated voice/data TDMA mobile radio system with a finite population of buffered users , 1994 .

[68]  Norman Abramson,et al.  The ALOHA System-Another Alternative for Computer Communications , 1899 .

[69]  Hai Le Vu,et al.  Accurate delay distribution for IEEE 802.11 DCF , 2006, IEEE Communications Letters.

[70]  Michael Devetsikiotis,et al.  A unified model for the performance analysis of IEEE 802.11e EDCA , 2005, IEEE Transactions on Communications.

[71]  Hossam S. Hassanein,et al.  Performance analysis of differentiated QoS supported by IEEE 802.11e enhanced distributed coordination function (EDCF) in WLAN , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[72]  Prathima Agrawal,et al.  Towards the performance analysis of IEEE 802.11 in multi-hop ad-hoc networks , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[73]  Ramjee Prasad,et al.  Wideband CDMA for third generation mobile communications , 1998 .

[74]  Kang G. Shin,et al.  Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802.11 WLAN under the DCF , 2002, IEEE 2002 Tenth IEEE International Workshop on Quality of Service (Cat. No.02EX564).

[75]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[76]  Xuemin Shen,et al.  Dynamic fair scheduling with QoS constraints in multimedia wideband CDMA cellular networks , 2004, IEEE Transactions on Wireless Communications.

[77]  Geyong Min,et al.  Performance Modeling of IEEE 802.11 DCF using Equilibrium Point Analysis , 2006, AINA.

[78]  L. Kleinrock,et al.  Packet Switching in Radio Channels: Part IV - Stability Considerations and Dynamic Control in Carrier Sense Multiple Access , 1977, IEEE Transactions on Communications.

[79]  P. Varaiya,et al.  Performance Analysis of Slotted IEEE 802 . 15 . 4 Medium Access Layer , 2005 .

[80]  T. S. Randhawa,et al.  Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function , 2004, IEEE Journal on Selected Areas in Communications.

[81]  Sunghyun Choi,et al.  Protection and guarantee for voice and video traffic in IEEE 802.11e wireless LANs , 2004, IEEE INFOCOM 2004.

[82]  Hongqiang Zhai,et al.  How well can the IEEE 802.11 wireless LAN support quality of service? , 2005, IEEE Transactions on Wireless Communications.

[83]  Ilenia Tinnirello,et al.  Remarks on IEEE 802.11 DCF performance analysis , 2005, IEEE Communications Letters.

[84]  Peter Key,et al.  Performance Analysis of Contention Based Medium Access Control Protocols , 2009, IEEE Trans. Inf. Theory.

[85]  Vincent W. S. Wong,et al.  Saturation throughput of IEEE 802.11e EDCA based on mean value analysis , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[86]  Mário Serafim Nunes,et al.  Performance evaluation of IEEE 802.11e , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[87]  Jin-Shyan Lee,et al.  Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks , 2006, IEEE Transactions on Consumer Electronics.

[88]  Yu Cheng,et al.  A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC , 2008, IEEE Transactions on Wireless Communications.

[89]  Myung J. Lee,et al.  Will IEEE 802.15.4 make ubiquitous networking a reality?: a discussion on a potential low power, low bit rate standard , 2004, IEEE Communications Magazine.

[90]  Weihua Zhuang,et al.  A cross-layer approach for WLAN voice capacity planning , 2007, IEEE Journal on Selected Areas in Communications.

[91]  Biplab Sikdar,et al.  A queueing model for finite load IEEE 802.11 random access MAC , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[92]  Olav N. Østerbø,et al.  Analysis of the Total Delay of IEEE 802.11e EDCA and 802.11 DCF , 2006, 2006 IEEE International Conference on Communications.

[93]  Qian Zhang,et al.  Performance study of MAC for service differentiation in IEEE 802.11 , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[94]  Isabelle Guérin Lassous,et al.  Performance issues with IEEE 802.11 in ad hoc networking , 2005, IEEE Communications Magazine.

[95]  M. van der Schaar,et al.  Cross-layer wireless multimedia transmission: challenges, principles, and new paradigms , 2005, IEEE Wireless Communications.

[96]  Anders Lindgren,et al.  Quality of Service Schemes for IEEE 802.11 Wireless LANs – An Evaluation , 2003, Mob. Networks Appl..

[97]  Raja Sengupta,et al.  Vehicle-to-vehicle safety messaging in DSRC , 2004, VANET '04.

[98]  Bhaskar Krishnamachari,et al.  Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks , 2004, IEEE International Conference on Performance, Computing, and Communications, 2004.

[99]  Xuemin Shen,et al.  Voice capacity analysis of WLAN with unbalanced traffic , 2006, IEEE Trans. Veh. Technol..

[100]  Sumit Roy,et al.  Analysis of the contention access period of IEEE 802.15.4 MAC , 2007, TOSN.

[101]  Theodore Antonakopoulos,et al.  The IEEE 802.11 Distributed Coordination Function in Small-Scale Ad-Hoc Wireless LANs , 2003, Int. J. Wirel. Inf. Networks.

[102]  Yang Xiao A simple and effective priority scheme for IEEE 802.11 , 2003, IEEE Communications Letters.

[103]  Marco Conti,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000, TNET.

[104]  Roberto Battiti,et al.  Supporting service differentiation with enhancements of the IEEE 802.11 MAC protocol: Models and analysis , 2007, Science in China Series F: Information Sciences.

[105]  Srinivas Katar,et al.  HomePlug 1.0 powerline communication LANs - protocol description and performance results , 2003, Int. J. Commun. Syst..

[106]  Yu Cheng,et al.  A Novel Performance Model for Distributed Prioritized MAC Protocols , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[107]  Shuji Tasaka Dynamic Behavior of a CSMA-CD System with a Finite Population of Buffered Users , 1986, IEEE Trans. Commun..

[108]  Yang Xiao Enhanced DCF of IEEE 802.11e to support QoS , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[109]  Min Young Chung,et al.  MAC throughput analysis of HomePlug 1.0 , 2005, IEEE Communications Letters.

[110]  Yang Xiao Backoff-based priority schemes for IEEE 802.11 , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[111]  Kuang Tsai,et al.  Packet output processes of CSMA and CSMA/CD protocols , 1996, IEEE Trans. Commun..

[112]  Fouad A. Tobagi,et al.  Distributions of packet delay and interdeparture time in slotted ALOHA and carrier sense multiple access , 1982, JACM.

[113]  Ajay Chandra V. Gummalla,et al.  Wireless medium access control protocols , 2000, IEEE Communications Surveys & Tutorials.

[114]  Pravin Varaiya,et al.  Saturation throughput analysis of IEEE 802.11 wireless LANs for a lossy channel , 2005, IEEE Communications Letters.

[115]  Marco Conti,et al.  IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism , 2000, IEEE Journal on Selected Areas in Communications.

[116]  M. Miskowicz,et al.  Performance analysis of predictive p-persistent CSMA protocol for control networks , 2002, 4th IEEE International Workshop on Factory Communication Systems.

[117]  Jelena V. Misic,et al.  Access delay for nodes with finite buffers in IEEE 802.15.4 beacon enabled PAN with uplink transmissions , 2005, Comput. Commun..

[118]  Ravi M. Yadumurthy,et al.  Reliable MAC broadcast protocol in directional and omni-directional transmissions for vehicular ad hoc networks , 2005, VANET '05.

[119]  Shuji Tasaka Performance analysis of multiple access protocols , 1986 .

[120]  Olav N. Østerbø,et al.  The delay distribution of IEEE 802.11e EDCA and 802.11 DCF , 2006, 2006 IEEE International Performance Computing and Communications Conference.

[121]  Hui Liu,et al.  OFDM-Based Broadband Wireless Networks – Design and Optimization , 2005 .

[122]  Kee Chaing Chua,et al.  A Capacity Analysis for the IEEE 802.11 MAC Protocol , 2001, Wirel. Networks.

[123]  Yu Cheng,et al.  A General Analytical Model for the IEEE 802.15.4 Contention Access Period , 2007, 2007 IEEE Wireless Communications and Networking Conference.

[124]  Yuguang Fang,et al.  Performance Analysis of IEEE 802.11 DCF in Imperfect Channels , 2006, IEEE Transactions on Vehicular Technology.

[125]  Olav N. Østerbø,et al.  Non-saturation and saturation analysis of IEEE 802.11e EDCA with starvation prediction , 2005, MSWiM '05.