Making RAMs Oblivious Requires Superlogarithmic Overhead

We prove a time-space tradeoff lower bound of T = Ω ( n log( n S ) log log( n S ) ) for randomized oblivious branching programs to compute 1GAP , also known as the pointer jumping problem, a problem for which there is a simple deterministic time n and space O(log n) RAM (random access machine) algorithm. Ajtai [3, 4] and Damgard, Meldgaard, and Nielsen [11] recently derived simulations of general RAMs by randomized oblivious RAMs with only a polylogarithmic factor increase in time and space. Our lower bound implies that a superlogarithmic factor increase is indeed necessary in any such simulation.

[1]  Oded Goldreich,et al.  Towards a theory of software protection and simulation by oblivious RAMs , 1987, STOC.

[2]  Rafail Ostrovsky,et al.  Efficient computation on oblivious RAMs , 1990, STOC '90.

[3]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[4]  Michael E. Saks,et al.  Time-Space Tradeoffs for Branching Programs , 2001, J. Comput. Syst. Sci..

[5]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[6]  Ivan Damgård,et al.  Perfectly Secure Oblivious RAM Without Random Oracles , 2011, IACR Cryptol. ePrint Arch..

[7]  Noga Alon,et al.  Meanders and Their Applications in Lower Bounds Arguments , 1988, J. Comput. Syst. Sci..

[8]  Miklós Ajtai,et al.  Oblivious RAMs without cryptogrpahic assumptions , 2010, STOC '10.

[9]  Michael E. Saks,et al.  Time-space trade-off lower bounds for randomized computation of decision problems , 2003, JACM.

[10]  Erik Vee,et al.  Time-space tradeoffs, multiparty communication complexity, and nearest-neighbor problems , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[11]  Rafail Ostrovsky,et al.  Software protection and simulation on oblivious RAMs , 1996, JACM.

[12]  Martin Sauerhoff A Lower Bound for Randomized Read-k-Times Branching Programs , 1997, Electron. Colloquium Comput. Complex..

[13]  Miklós Ajtai,et al.  A Non-linear Time Lower Bound for Boolean Branching Programs , 2005, Theory Comput..

[14]  Miklós Ajtai,et al.  Determinism versus Nondeterminism for Linear Time RAMs with Memory Restrictions , 2002, J. Comput. Syst. Sci..