Graph Laplacians, nodal domains, and hyperplane arrangements

Eigenvectors of the Laplacian of a graph G have received increasing attention in the recent past. Here we investigate their so-called nodal domains, i.e., the connected components of the maximal induced subgraphs of G on which an eigenvector \psi does not change sign. An analogue of Courant's nodal domain theorem provides upper bounds on the number of nodal domains depending on the location of \psi in the spectrum. This bound, however, is not sharp in general. In this contribution we consider the problem of computing minimal and maximal numbers of nodal domains for a particular graph. The class of Boolean Hypercubes is discussed in detail. We find that, despite the simplicity of this graph class, for which complete spectral information is available, the computations are still non-trivial. Nevertheless, we obtained some new results and a number of conjectures. (author's abstract)

[1]  Ante Graovac,et al.  Application of the adjacency matrix eigenvectors method to geometry determination of toroidal carbon molecules , 2000 .

[2]  B. Derrida Random-Energy Model: Limit of a Family of Disordered Models , 1980 .

[3]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[4]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[5]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[6]  Tomaz Pisanski,et al.  Another Infinite Sequence of Dense Triangle-Free Graphs , 1998, Electron. J. Comb..

[7]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[8]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[9]  Patrick W. Fowler,et al.  Molecular Graph Eigenvectors for Molecular Coordinates , 1994, Graph Drawing.

[10]  Chris Godsil,et al.  Symmetry and eigenvectors , 1997 .

[11]  J. Friedman Some geometric aspects of graphs and their eigenfunctions , 1993 .

[12]  Peter F. Stadler,et al.  Amplitude Spectra of Fitness Landscapes , 1998, Adv. Complex Syst..

[13]  G. Ziegler Lectures on Polytopes , 1994 .

[14]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[15]  R. Roth,et al.  On the eigenvectors belonging to the minimum eigenvalue of an essentially nonnegative symmetric matrix with bipartite graph , 1989 .

[16]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[17]  B. Sturmfels Oriented Matroids , 1993 .

[18]  P. Stadler,et al.  Random field models for fitness landscapes , 1999 .

[19]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[20]  Hans Lewy On the mininum number of domains in which the nodal lines of spherical harmonics divide the sphere , 1977 .

[21]  Lov K. Grover Local search and the local structure of NP-complete problems , 1992, Oper. Res. Lett..

[22]  N. J. Fine,et al.  The generalized Walsh functions , 1950 .

[23]  John Shawe-Taylor,et al.  Characterizing Graph Drawing with Eigenvectors , 2000, J. Chem. Inf. Comput. Sci..

[24]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[25]  J. Leydold,et al.  Discrete Nodal Domain Theorems , 2000, math/0009120.

[26]  Isabel Faria Permanental roots and the star degree of a graph , 1985 .

[27]  B. Mohar,et al.  Eigenvalues in Combinatorial Optimization , 1993 .

[28]  Günter M. Ziegler,et al.  Oriented Matroids , 2017, Handbook of Discrete and Computational Geometry, 2nd Ed..

[29]  V. Klee,et al.  Combinatorial and graph-theoretical problems in linear algebra , 1993 .

[30]  Y. D. Verdière On a novel graph invariant and a planarity criterion , 1990 .

[31]  P. Fowler,et al.  Topological coordinates for toroidal structures , 2001 .

[32]  Victor Reiner,et al.  Perron–Frobenius type results and discrete versions of nodal domain theorems , 1999 .

[33]  A. W. M. Dress,et al.  Evolution on sequence space and tensor products of representation spaces , 1988 .

[34]  D. Cvetkovic,et al.  Eigenspaces of graphs: Bibliography , 1997 .

[35]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[36]  Vladimir I. Arnold,et al.  Some unsolved problems in the theory of differential equations and mathematical physics , 1989 .

[37]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[38]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[39]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[40]  Yves Colin de Verdière,et al.  Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.

[41]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[42]  D. L. Powers Graph Partitioning by Eigenvectors , 1988 .

[43]  E. Hückel,et al.  Quantentheoretische Beiträge zum Benzolproblem , 1931 .

[44]  H. van der Holst,et al.  Topological and Spectral Graph Characterizations , 1996 .

[45]  Chris Godsil,et al.  Eigenpolytopes of Distance Regular Graphs , 1998, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[46]  J. Leydold On the number of nodal domains of spherical harmonics , 1996 .

[47]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[48]  M. N. Shanmukha Swamy,et al.  Graphs: Theory and Algorithms , 1992 .

[49]  J. Gilbert,et al.  Graph Coloring Using Eigenvalue Decomposition , 1983 .

[50]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[51]  P. Stadler Landscapes and their correlation functions , 1996 .

[52]  Türker Bıyıkoğlu,et al.  A discrete nodal domain theorem for trees , 2003 .

[53]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[54]  Yves Colin de Verdière Le trou spectral des graphes et leurs propriétés d'expansion , 1994 .

[55]  Shiu-yuen Cheng Eigenfunctions and nodal sets , 1976 .

[56]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[57]  Stephen Guattery,et al.  On the Quality of Spectral Separators , 1998, SIAM J. Matrix Anal. Appl..

[58]  B. Derrida Random-energy model: An exactly solvable model of disordered systems , 1981 .

[59]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[60]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[61]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[62]  M. Fiedler Eigenvectors of acyclic matrices , 1975 .