Graph Laplacians, nodal domains, and hyperplane arrangements
暂无分享,去创建一个
Peter F. Stadler | Tomaž Pisanski | Josef Leydold | Wim Hordijk | Türker Bıyıkoğlu | J. Leydold | P. Stadler | Türker Bíyíkoglu | T. Pisanski | W. Hordijk
[1] Ante Graovac,et al. Application of the adjacency matrix eigenvectors method to geometry determination of toroidal carbon molecules , 2000 .
[2] B. Derrida. Random-Energy Model: Limit of a Family of Disordered Models , 1980 .
[3] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[4] Christian M. Reidys,et al. Combinatorial Landscapes , 2002, SIAM Rev..
[5] D. Cvetkovic,et al. Spectra of Graphs: Theory and Applications , 1997 .
[6] Tomaz Pisanski,et al. Another Infinite Sequence of Dense Triangle-Free Graphs , 1998, Electron. J. Comb..
[7] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[8] Norman Biggs. Algebraic Graph Theory: Index , 1974 .
[9] Patrick W. Fowler,et al. Molecular Graph Eigenvectors for Molecular Coordinates , 1994, Graph Drawing.
[10] Chris Godsil,et al. Symmetry and eigenvectors , 1997 .
[11] J. Friedman. Some geometric aspects of graphs and their eigenfunctions , 1993 .
[12] Peter F. Stadler,et al. Amplitude Spectra of Fitness Landscapes , 1998, Adv. Complex Syst..
[13] G. Ziegler. Lectures on Polytopes , 1994 .
[14] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[15] R. Roth,et al. On the eigenvectors belonging to the minimum eigenvalue of an essentially nonnegative symmetric matrix with bipartite graph , 1989 .
[16] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[17] B. Sturmfels. Oriented Matroids , 1993 .
[18] P. Stadler,et al. Random field models for fitness landscapes , 1999 .
[19] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[20] Hans Lewy. On the mininum number of domains in which the nodal lines of spherical harmonics divide the sphere , 1977 .
[21] Lov K. Grover. Local search and the local structure of NP-complete problems , 1992, Oper. Res. Lett..
[22] N. J. Fine,et al. The generalized Walsh functions , 1950 .
[23] John Shawe-Taylor,et al. Characterizing Graph Drawing with Eigenvectors , 2000, J. Chem. Inf. Comput. Sci..
[24] B. Mohar. THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .
[25] J. Leydold,et al. Discrete Nodal Domain Theorems , 2000, math/0009120.
[26] Isabel Faria. Permanental roots and the star degree of a graph , 1985 .
[27] B. Mohar,et al. Eigenvalues in Combinatorial Optimization , 1993 .
[28] Günter M. Ziegler,et al. Oriented Matroids , 2017, Handbook of Discrete and Computational Geometry, 2nd Ed..
[29] V. Klee,et al. Combinatorial and graph-theoretical problems in linear algebra , 1993 .
[30] Y. D. Verdière. On a novel graph invariant and a planarity criterion , 1990 .
[31] P. Fowler,et al. Topological coordinates for toroidal structures , 2001 .
[32] Victor Reiner,et al. Perron–Frobenius type results and discrete versions of nodal domain theorems , 1999 .
[33] A. W. M. Dress,et al. Evolution on sequence space and tensor products of representation spaces , 1988 .
[34] D. Cvetkovic,et al. Eigenspaces of graphs: Bibliography , 1997 .
[35] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[36] Vladimir I. Arnold,et al. Some unsolved problems in the theory of differential equations and mathematical physics , 1989 .
[37] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .
[38] M. Fiedler. Algebraic connectivity of graphs , 1973 .
[39] Jim Lawrence,et al. Oriented matroids , 1978, J. Comb. Theory B.
[40] Yves Colin de Verdière,et al. Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.
[41] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[42] D. L. Powers. Graph Partitioning by Eigenvectors , 1988 .
[43] E. Hückel,et al. Quantentheoretische Beiträge zum Benzolproblem , 1931 .
[44] H. van der Holst,et al. Topological and Spectral Graph Characterizations , 1996 .
[45] Chris Godsil,et al. Eigenpolytopes of Distance Regular Graphs , 1998, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[46] J. Leydold. On the number of nodal domains of spherical harmonics , 1996 .
[47] Noga Alon,et al. lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.
[48] M. N. Shanmukha Swamy,et al. Graphs: Theory and Algorithms , 1992 .
[49] J. Gilbert,et al. Graph Coloring Using Eigenvalue Decomposition , 1983 .
[50] Fan Chung,et al. Spectral Graph Theory , 1996 .
[51] P. Stadler. Landscapes and their correlation functions , 1996 .
[52] Türker Bıyıkoğlu,et al. A discrete nodal domain theorem for trees , 2003 .
[53] V. Sunder,et al. The Laplacian spectrum of a graph , 1990 .
[54] Yves Colin de Verdière. Le trou spectral des graphes et leurs propriétés d'expansion , 1994 .
[55] Shiu-yuen Cheng. Eigenfunctions and nodal sets , 1976 .
[56] N. Alon,et al. il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .
[57] Stephen Guattery,et al. On the Quality of Spectral Separators , 1998, SIAM J. Matrix Anal. Appl..
[58] B. Derrida. Random-energy model: An exactly solvable model of disordered systems , 1981 .
[59] Alex Pothen,et al. PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .
[60] Charles E. Clark,et al. Monte Carlo , 2006 .
[61] W. Imrich,et al. Product Graphs: Structure and Recognition , 2000 .
[62] M. Fiedler. Eigenvectors of acyclic matrices , 1975 .