The Cayley-Hamilton Theorem for Noncommutative Semirings
暂无分享,去创建一个
[1] Thomas A. Henzinger,et al. Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.
[2] Howard Straubing,et al. A combinatorial proof of the Cayley-Hamilton theorem , 1983, Discret. Math..
[3] D. E. Rutherford,et al. XIX.—The Cayley-Hamilton Theorem for Semi-rings , 1964, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[4] Gary A. Kildall,et al. A unified approach to global program optimization , 1973, POPL.
[5] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[6] Maurice Nivat,et al. A note about minimal non-deterministic automata , 1992, Bull. EATCS.
[7] GondranM.,et al. Dioïds and semirings , 2007 .
[8] Ezra Miller,et al. Toric degeneration of Schubert varieties and Gelfand¿Tsetlin polytopes , 2003 .
[9] Radu Grosu,et al. Finite Automata as Time-Inv Linear Systems Observability, Reachability and More , 2009, HSCC.
[10] W. Press,et al. Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .
[11] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[12] Thomas A. Henzinger,et al. The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..
[13] Nancy A. Lynch,et al. Hybrid I/O automata , 1995, Inf. Comput..
[14] R. Ree,et al. Lie Elements and an Algebra Associated With Shuffles , 1958 .