Ionosphere weighted global positioning system carrier phase ambiguity resolution

Integer Ambiguity constraint is essential in precise GPS positioning. The performance and reliability of the ambiguity resolution process are being hampered by the current culmination (Y2000) of the eleven-year solar cycle. The traditional approach to mitigate the high ionospheric effect has been either to reduce the inter-station separation or to form ionosphere-free observables. Neither is satisfactory: the first restricts the operating range, and the second no longer possesses the ”integerness” of the ambiguities. A third generalized approach is introduced herein, whereby the zero ionosphere weight constraint, or pseudo-observables, with an appropriate weight is added to the Kalman Filter algorithm. The weight can be tightly fixed yielding the model equivalence of an independent L1/L2 dual-band model. At the other extreme, an infinite floated weight gives the equivalence of an ionosphere-free model, yet perserves the ambiguity integerness. A stochastically tuned, or weighted, model provides a compromise between the two extremes. The reliability of ambiguity estimates relies on many factors, including an accurate functional model, a realistic stochastic model, and a subsequent efficient integer search algorithm. These are examined closely in this research. Two days of selected Swedish GPS Network data sets from ionospherically active (up to 15 ppm) and moderate (up to 4 ppm) days, forming a maximum baseline length of 400 km, have been analyzed. All three ionosphere weight models yielded a 90% range of correct widelane ambiguities within three minutes, regardless of interiii

[1]  Fritz K. Brunner,et al.  Effect of the troposphere on GPS measurements , 1993 .

[2]  Van Dierendonck,et al.  Understanding GPS receiver terminology: a tutorial , 1995 .

[3]  Charles C. Counselman,et al.  Interferometric analysis of GPS phase observations , 1986 .

[4]  Herbert Landau,et al.  On-the-Fly Ambiguity Resolution for Precise Differential Positioning , 1992 .

[5]  M. Saltzmann,et al.  Least squares filtering and testing for geodetic navigation applications , 1993 .

[6]  S. Skone Wide area ionosphere grid modelling in the auroral region , 1998 .

[7]  Ron Hatch,et al.  Instantaneous Ambiguity Resolution , 1991 .

[8]  Dennis Odijk,et al.  Stochastic modelling of the ionosphere for fast GPS ambiguity resolution , 2000 .

[9]  B. Wilson,et al.  A New Method for Monitoring the Earth's Ionospheric Total Electron Content Using the GPS Global Network , 1993 .

[10]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[11]  G. Lachapelle,et al.  High‐precision GPS navigation with emphasis on carrier‐phase ambiguity resolution , 1992 .

[12]  Gérard Lachapelle,et al.  Test of a 400 km x 600 km Network of Reference Receivers for Precise Kinematic Carrier-Phase Positioning in Norway , 1998 .

[13]  Dennis Odijk,et al.  Ambiguity Dilution of Precision: Definition, Properties and Application , 1997 .

[14]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[15]  Steven Businger,et al.  The Promise of GPS in Atmospheric Monitoring , 1996 .

[16]  G. Lachapelle,et al.  Testing a Multi-Reference GPS Station Network for OTF Positioning in Brazil , 2000 .

[17]  P. D. Jonge,et al.  The LAMBDA method for integer ambiguity estimation: implementation aspects , 1996 .

[18]  Waldemar Kunysz A Novel GPS Survey Antenna , 2000 .

[19]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[20]  Per Enge,et al.  Gps Signal Structure And Theoretical Performance , 1996 .

[21]  J. Raquet Development of a Method for Kinematic GPS Carrier-Phase Ambiguity Resolution Using Multiple Reference Receivers , 1998 .

[22]  G. Blewitt Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km , 1989 .

[23]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[24]  Robert G Lorenz,et al.  Precise GPS Surveying After Y-Code , 1992 .

[25]  Richard B. Langley,et al.  An Assessment of Predicted and Measured Ionospheric Total Electron Content Using a Regional GPS Network , 1996 .

[26]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[27]  Richard B. Langley,et al.  GPS, the Ionosphere, and the Solar Maximum , 2000 .

[28]  Michael Shaw Modernization of the Global Positioning System , 2000 .

[29]  D. S. Chen,et al.  Development of a fast ambiguity search filtering (FASF) method for GPS carrier phase ambiguity resolution , 1994 .

[30]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[31]  C.C.J.M. Tiberius,et al.  The GPS data weight matrix: what are the issues? , 1999 .

[32]  C.C.J.M. Tiberius,et al.  Recursive data processing for kinematic GPS surveying , 1998 .

[33]  G. Strang,et al.  Linear Algebra, Geodesy, and GPS , 1997 .

[34]  Markus Rothacher,et al.  Processing Strategies for Regional GPS Networks , 1998 .

[35]  I. I. Mueller General Meeting of the International Association of Geodesy , 1980 .

[36]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[37]  Gang Lu,et al.  Development of a GPS multi-antenna system for attitude determination , 1995 .

[38]  Stephen M. Lichten,et al.  Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements , 1990 .

[39]  P. Teunissen An optimality property of the integer least-squares estimator , 1999 .

[40]  Gérard Lachapelle,et al.  DGPS RTK Positioning Using a Reference Network , 2000 .

[41]  C. Tiberius,et al.  ESTIMATION OF THE STOCHASTIC MODEL FOR GPS CODE AND PHASE OBSERVABLES , 2000 .