Modelling and Materials Science of Cement-Based Materials Part I: An Overview

A selection of models for the microstructure of cement-based materials are reviewed. The models are relevant to the approach of materials science in that they intend to help establish a basic understanding of materials properties and the relationships between processing and properties. Strategies and goals of modelling are considered.

[1]  James R. Clifton,et al.  Mathematical modeling of tricalcium silicate hydration. II. Hydration sub-models and the effect of model parameters , 1982 .

[2]  J. Pommersheim,et al.  KINETICS OF HYDRATION OF TRICALCIUM ALUMINATE , 1986 .

[3]  E. Osman,et al.  Double power law for basic creep of concrete , 1976 .

[4]  Fredrik P. Glasser,et al.  A thermodynamic model for blended cements , 1992 .

[5]  Pk Mehta,et al.  Materials Science of Concrete II , 1992 .

[6]  James R. Clifton,et al.  Mathematical modeling of tricalcium silicate hydration , 1979 .

[7]  E. Garboczi,et al.  Computer simulation of the diffusivity of cement-based materials , 1992 .

[8]  H. Jennings,et al.  Simulation of Microstructure Development During the Hydration of a Cement Compound , 1986 .

[9]  Zdeněk P. Bažant,et al.  Mathematical modeling of creep and shrinkage of concrete , 1988 .

[10]  Interpretation of impedance spectroscopy of cement paste via computer modelling , 1995, Journal of Materials Science.

[11]  T. C. Powers,et al.  Physical Properties of Cement Paste , 1960 .

[12]  Zdeněk P. Bažant,et al.  Creep and Shrinkage of Concrete: Mathematical Modeling , 1986 .

[13]  Hamlin M. Jennings,et al.  Model for the Developing Microstructure in Portland Cement Pastes , 1994 .

[14]  S. Brunauer,et al.  THE NEW MODEL OF HARDENED PORTLAND CEMENT PASTE , 1970 .

[15]  Lawrence L. Kupper,et al.  Probability, statistics, and decision for civil engineers , 1970 .

[16]  Boundary layer phenomenon in the plastic zone near a rapidly propagating crack tip , 1982 .

[17]  Torben C. Hansen,et al.  Physical structure of hardened cement paste. A classical approach , 1986 .

[18]  Moshe F. Rubinstein,et al.  Creep analysis of axisymmetric bodies using finite elements , 1968 .

[19]  E. Garboczi,et al.  Interpretation of the impedance spectroscopy of cement paste via computer modelling , 1994 .

[20]  J. Z. Zhu,et al.  The finite element method , 1977 .

[21]  R. Feldman,et al.  A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties , 1968 .