Moderate HER2 expression as a prognostic factor in hormone receptor positive breast cancer.

Overexpression and/or amplification of human epidermal growth factor receptor 2 (HER2) is associated with poor prognosis in breast cancer and predicts response to anti-HER2 therapy in breast cancer. The prognostic relevance of moderate expression of HER2 is unclear. Data of 9872 patients with primary nonmetastatic breast cancer from the cancer registries of Magdeburg and Halle, Germany, were analyzed retrospectively. A total of 5907 patients with complete data sets including follow-up were eligible for analysis. HER2 status was determined as recommended by international guidelines. Of 5907 patients investigated, 5023 (68.4%) had HER2 0 and 1+ expression and 884 (12.0%) had HER2 (2+)/HER2- expression. Patients with hormone receptor positive (HR+) and HER2 (2+) tumors had a shorter median disease-free survival (DFS; P<0.0001) and breast cancer specific survival (BCSS; P=0.019) than HR+ patients with HER2 (0/1+) tumors. Among patients with HR- breast cancer there was no significant difference between HER2 (2+) and HER2 (0/1+) tumors. In multivariate analysis after adjustment for other prognostic factors, HER2 (2+) status remained an unfavorable prognostic factor for DFS (hazard ratio (HR)=1.217, 95% CI=1.052-1.408; P=0.008) but not for BCSS (HR=1.045, 95% CI=0.926-1.178; P=0.474). The HER2 (2+) status is an unfavorable prognostic factor for survival of patients with HR+ breast cancer. The impact of anti-HER2 therapy in this group of patients should be evaluated.

[1]  T. Yamamoto,et al.  The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. , 1986, Science.

[2]  John M S Bartlett,et al.  Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. , 2014, Archives of pathology & laboratory medicine.

[3]  C. Perou,et al.  Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013 , 2013, Annals of oncology : official journal of the European Society for Medical Oncology.

[4]  A. Pandiella,et al.  Prognostic relevance of receptor tyrosine kinase expression in breast cancer: a meta-analysis. , 2014, Cancer treatment reviews.

[5]  N. Lemoine,et al.  c-erbB-3 and c-erbB-2 protein expression in node-negative breast carcinoma--an immunocytochemical study. , 1994, European journal of cancer.

[6]  M. Sormani,et al.  HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. , 2008, Journal of the National Cancer Institute.

[7]  David L Rimm,et al.  Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. , 2003, Cancer research.

[8]  A. Gown,et al.  Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  Hartwig Huland,et al.  Low Level Her2 Overexpression Is Associated with Rapid Tumor Cell Proliferation and Poor Prognosis in Prostate Cancer , 2010, Clinical Cancer Research.

[10]  M. Jeffers,et al.  Amplification of the HER2 gene in breast cancers testing 2+ weak positive by HercepTest immunohistochemistry: false-positive or false-negative immunohistochemistry? , 2006, Journal of Clinical Pathology.

[11]  J. Ross,et al.  The HER‐2/neu Oncogene in Breast Cancer: Prognostic Factor, Predictive Factor, and Target for Therapy , 1998, The oncologist.

[12]  A. Chaudhuri,et al.  HER2 Status and Benefit from Adjuvant Trastuzumab in Breast Cancer , 2008 .

[13]  R. Ponzone,et al.  Moderate immunohistochemical expression of HER-2 (2+) without HER-2 gene amplification is a negative prognostic factor in early breast cancer. , 2012, The oncologist.

[14]  E. Perez,et al.  HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  Anthony Rhodes,et al.  American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. , 2006, Archives of pathology & laboratory medicine.

[16]  W. McGuire,et al.  Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. , 1987, Science.

[17]  R. Schiff,et al.  Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. , 2008, Cancer research.

[18]  P. Ellis,et al.  Adjuvant trastuzumab for HER2-positive breast cancer , 2005, The Lancet.

[19]  S. Ménard,et al.  Biology, prognosis and response to therapy of breast carcinomas according to HER2 score. , 2008, Annals of oncology : official journal of the European Society for Medical Oncology.

[20]  Eunyoung Kang,et al.  Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance , 2012, Modern Pathology.

[21]  W. Woodward,et al.  Even Low-level HER2 Expression May be Associated With Worse Outcome in Node-positive Breast Cancer , 2009, The American journal of surgical pathology.

[22]  W Godolphin,et al.  Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. , 1989, Science.

[23]  D. Berry,et al.  HER-2/neu and p53 expression versus tamoxifen resistance in estrogen receptor-positive, node-positive breast cancer. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.