Efficient and Explicit Balanced Primer Codes

To equip DNA-based data storage with random-access capabilities, Yazdi et al. (2018) prepended DNA strands with specially chosen address sequences called primers and provided certain design criteria for these primers. We provide explicit constructions of error-correcting codes that are suitable as primer addresses and equip these constructions with efficient encoding algorithms. Specifically, our constructions take cyclic or linear codes as inputs and produce sets of primers with similar error-correcting capabilities. Using certain classes of BCH codes, we obtain infinite families of primer sets of length n, minimum distance d with (d + 1) log4 n + O(1) redundant symbols. Our techniques involve reversible cyclic codes (1964), an encoding method of Tavares et al. (1971) and Knuth’s balancing technique (1986). In our investigation, we also construct efficient and explicit binary balanced error-correcting codes.

[1]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[2]  Yeow Meng Chee,et al.  Efficient and Explicit Balanced Primer Codes , 2020, IEEE Transactions on Information Theory.

[3]  Kui Cai,et al.  Properties and Constructions of Constrained Codes for DNA-Based Data Storage , 2018, IEEE Access.

[4]  Jian Ma,et al.  DNA-Based Storage: Trends and Methods , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[5]  Donald E. Knuth,et al.  Efficient balanced codes , 1986, IEEE Trans. Inf. Theory.

[6]  Jos H. Weber,et al.  Error-Correcting Balanced Knuth Codes , 2012, IEEE Transactions on Information Theory.

[7]  Stafford E. Tavares,et al.  On the Decomposition of Cyclic Codes into Cyclic Classes , 1971, Inf. Control..

[8]  Cunsheng Ding,et al.  Two Families of LCD BCH Codes , 2016, IEEE Transactions on Information Theory.

[9]  Amit Marathe,et al.  On combinatorial DNA word design , 1999, DNA Based Computers.

[10]  Han Mao Kiah,et al.  Mutually Uncorrelated Primers for DNA-Based Data Storage , 2017, IEEE Transactions on Information Theory.

[11]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[12]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[13]  Jian Ma,et al.  A Rewritable, Random-Access DNA-Based Storage System , 2015, Scientific Reports.

[14]  Olgica Milenkovic,et al.  Portable and Error-Free DNA-Based Data Storage , 2016, Scientific Reports.

[15]  Navin Kashyap,et al.  On the Design of Codes for DNA Computing , 2005, WCC.

[16]  S. G. S. SmvA A Note on the Decomposition of Cyclic Codes into Cyclic Classes * , 2004 .

[17]  Carlos R. P. Hartmann,et al.  On the minimum distance of certain reversible cyclic codes (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[18]  Stafford E. Tavares,et al.  A Note on the Decomposition of Cyclic Codes into Cyclic Classes , 1973, Inf. Control..

[19]  Oliver D. King,et al.  Linear constructions for DNA codes , 2005, Theor. Comput. Sci..

[20]  Cunsheng Ding,et al.  LCD Cyclic Codes Over Finite Fields , 2017, IEEE Transactions on Information Theory.

[21]  Eitan Yaakobi,et al.  Codes Correcting a Burst of Deletions or Insertions , 2016, IEEE Transactions on Information Theory.

[22]  Manish K. Gupta,et al.  The Art of DNA Strings: Sixteen Years of DNA Coding Theory , 2016, ArXiv.

[23]  James L. Massey Reversible Codes , 1964, Inf. Control..