Harmonic Retrieval with $L_1$-Tucker Tensor Decomposition

Harmonic retrieval (HR) has a wide range of applications in the scenes where signals are modelled as a summation of sinusoids. Past works have developed a number of approaches to recover the original signals. Most of them rely on classical singular value decomposition, which are vulnerable to unexpected outliers. In this paper, we present new decomposition algorithms of third-order complex-valued tensors with L1principle component analysis (L1-PCA) of complex data and apply them to a novel random access HR model in presence of outliers. We also develop a novel subcarrier recovery method for the proposed model. Simulations are designed to compare our proposed method with some existing tensor-based algorithms for HR. The results demonstrate the outlier-insensitivity of the proposed method.

[1]  Asoke K. Nandi,et al.  Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation , 2001, IEEE Transactions on Biomedical Engineering.

[2]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[3]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[4]  Rasmus Bro,et al.  Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .

[5]  Ramdas Kumaresan,et al.  An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[6]  Sabine Van Huffel,et al.  Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..

[7]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[8]  Nikos D. Sidiropoulos,et al.  Robust iterative fitting of multilinear models , 2005, IEEE Transactions on Signal Processing.

[9]  Hing-Cheung So,et al.  Robust Multi-Dimensional Harmonic Retrieval Using Iteratively Reweighted HOSVD , 2015, IEEE Signal Processing Letters.

[10]  Arogyaswami Paulraj,et al.  Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms , 1996, IEEE Trans. Signal Process..

[11]  Hing Cheung So,et al.  Robust Harmonic Retrieval via Block Successive Upper-Bound Minimization , 2018, IEEE Transactions on Signal Processing.

[12]  T. Kailath,et al.  Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.

[13]  Panos P. Markopoulos,et al.  L1-Norm Tucker Tensor Decomposition , 2019, IEEE Access.

[14]  Adriaan van den Bos,et al.  A Cramer-Rao lower bound for complex parameters , 1994, IEEE Trans. Signal Process..

[15]  Kostas Kokkinakis,et al.  Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients. , 2008, The Journal of the Acoustical Society of America.

[16]  Panos P. Markopoulos,et al.  L1-Norm Principal-Component Analysis of Complex Data , 2017, IEEE Transactions on Signal Processing.

[17]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[18]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[19]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[20]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[21]  Chrysostomos L. Nikias,et al.  Parameter estimation of exponentially damped sinusoids using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..

[22]  VandewalleJoos,et al.  On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .

[23]  Panos P. Markopoulos,et al.  Adaptive L1-Norm Principal-Component Analysis With Online Outlier Rejection , 2018, IEEE Journal of Selected Topics in Signal Processing.

[24]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[25]  Nicholas Tsagkarakis,et al.  Optimal Joint Channel Estimation and Data Detection by L1-norm PCA for Streetscape IoT , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[26]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.