Harmonic Retrieval with $L_1$-Tucker Tensor Decomposition
暂无分享,去创建一个
Zhenting Luan | Wei Han | Zhenyu Ming | Liping Zhang | Bo Bai | Xiang Chen | Yuchi Wu
[1] Asoke K. Nandi,et al. Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation , 2001, IEEE Transactions on Biomedical Engineering.
[2] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[3] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[4] Rasmus Bro,et al. Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .
[5] Ramdas Kumaresan,et al. An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..
[6] Sabine Van Huffel,et al. Exponential data fitting using multilinear algebra: the single‐channel and multi‐channel case , 2005, Numer. Linear Algebra Appl..
[7] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[8] Nikos D. Sidiropoulos,et al. Robust iterative fitting of multilinear models , 2005, IEEE Transactions on Signal Processing.
[9] Hing-Cheung So,et al. Robust Multi-Dimensional Harmonic Retrieval Using Iteratively Reweighted HOSVD , 2015, IEEE Signal Processing Letters.
[10] Arogyaswami Paulraj,et al. Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms , 1996, IEEE Trans. Signal Process..
[11] Hing Cheung So,et al. Robust Harmonic Retrieval via Block Successive Upper-Bound Minimization , 2018, IEEE Transactions on Signal Processing.
[12] T. Kailath,et al. Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.
[13] Panos P. Markopoulos,et al. L1-Norm Tucker Tensor Decomposition , 2019, IEEE Access.
[14] Adriaan van den Bos,et al. A Cramer-Rao lower bound for complex parameters , 1994, IEEE Trans. Signal Process..
[15] Kostas Kokkinakis,et al. Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients. , 2008, The Journal of the Acoustical Society of America.
[16] Panos P. Markopoulos,et al. L1-Norm Principal-Component Analysis of Complex Data , 2017, IEEE Transactions on Signal Processing.
[17] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[18] R. Kumaresan,et al. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .
[19] H. Hotelling. Analysis of a complex of statistical variables into principal components. , 1933 .
[20] K. Arun,et al. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .
[21] Chrysostomos L. Nikias,et al. Parameter estimation of exponentially damped sinusoids using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..
[22] VandewalleJoos,et al. On the Best Rank-1 and Rank-(R1,R2,. . .,RN) Approximation of Higher-Order Tensors , 2000 .
[23] Panos P. Markopoulos,et al. Adaptive L1-Norm Principal-Component Analysis With Online Outlier Rejection , 2018, IEEE Journal of Selected Topics in Signal Processing.
[24] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[25] Nicholas Tsagkarakis,et al. Optimal Joint Channel Estimation and Data Detection by L1-norm PCA for Streetscape IoT , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[26] P. Alam. ‘L’ , 2021, Composites Engineering: An A–Z Guide.