CF3 : An Electron-Withdrawing Substituent for Aromatic Anion Acceptors? "Side-On" versus "On-Top" Binding of Halides.

The ability of multiple CF3 -substituted arenes to act as acceptors for anions is investigated. The results of quantum-chemical calculations show that a high degree of trifluoromethyl substitution at the aromatic ring results in a positive quadrupole moment. However, depending on the polarizability of the anion and on the substitution at the arene, three different modes of interaction, namely Meisenheimer complex, side-on hydrogen bonding, or anion-π interaction, can occur. Experimentally, the side-on as well as a η(2) -type π-complex are observed in the crystal, whereas in solution only side-on binding is found.

[1]  K. Rissanen,et al.  Experimental investigation of anion-π interactions--applications and biochemical relevance. , 2016, Chemical communications.

[2]  S. Matile,et al.  Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces. , 2015, Journal of the American Chemical Society.

[3]  S. Matile,et al.  Selective acceleration of disfavored enolate addition reactions by anion–π interactions† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments. See DOI: 10.1039/c5sc02563j , 2015, Chemical science.

[4]  K. Rissanen,et al.  Anion-π Interactions with Fluoroarenes. , 2015, Chemical reviews.

[5]  K. Rissanen,et al.  The pentafluorophenyl group as π-acceptor for anions: a case study , 2014, Chemical science.

[6]  M. Albrecht,et al.  Quantum-Chemical Investigations on the Structural Variability of Anion–π Interactions , 2014 .

[7]  D. Quiñonero,et al.  Long-range effects in anion-π interactions: their crucial role in the inhibition mechanism of Mycobacterium tuberculosis malate synthase. , 2014, Chemistry.

[8]  K. Rissanen,et al.  Single‐Crystal X‐ray Diffraction and Solution Studies of Anion–π Interactions in N‐(Pentafluorobenzyl)pyridinium Salts , 2014 .

[9]  D. Quiñonero,et al.  Thermodynamic characterization of halide-π interactions in solution using "two-wall" aryl extended calix[4]pyrroles as model system. , 2014, Journal of the American Chemical Society.

[10]  A. Bretschneider,et al.  Preorganized anion traps for exploiting anion-π interactions: an experimental and computational study. , 2013, Chemistry.

[11]  A. Bianchi,et al.  Thermodynamics of anion-π interactions in aqueous solution. , 2013, Journal of the American Chemical Society.

[12]  K. Rissanen,et al.  Cooperativity of H-bonding and anion-π interaction in the binding of anions with neutral π-acceptors. , 2012, Chemical communications.

[13]  Yuguang C. Li,et al.  Bis(perfluoroalkyl) phosphino-oxazoline: a modular, stable, strongly π-accepting ligand for asymmetric catalysis. , 2012, The Journal of organic chemistry.

[14]  K. Rissanen,et al.  Controlling the position of anions relative to a pentafluorophenyl group , 2012 .

[15]  K. Rissanen,et al.  Weak Intermolecular Anion–π Interactions in Pentafluorobenzyl-Substituted Ammonium Betaines , 2012 .

[16]  P. Gamez,et al.  Directional character of solvent- and anion-pentafluorophenyl supramolecular interactions , 2012 .

[17]  K. Rissanen,et al.  Geometrically diverse anions in anion–π interactions , 2012 .

[18]  A. Frontera,et al.  Putting anion-π interactions into perspective. , 2011, Angewandte Chemie.

[19]  J. Reedijk,et al.  Anion‐π‐Wechselwirkungen ins rechte Licht gerückt , 2011 .

[20]  K. Rissanen,et al.  From attraction to repulsion: anion-π interactions between bromide and fluorinated phenyl groups. , 2011, Chemical communications.

[21]  Ernst-Walter Knapp,et al.  Recent advances in anion–π interactions , 2011 .

[22]  D. Quiñonero,et al.  On the directionality of anion-π interactions. , 2011, Physical chemistry chemical physics : PCCP.

[23]  D. Quiñonero,et al.  Relevant anion-π interactions in biological systems: the case of urate oxidase. , 2011, Angewandte Chemie.

[24]  K. Rissanen,et al.  CH-anion versus anion-π interactions in the crystal and in solution of pentafluorobenzyl phosphonium salts. , 2010, Dalton transactions.

[25]  K. Rissanen,et al.  Anion-π interactions in salts with polyhalide anions: trapping of I4(2-). , 2010, Chemistry.

[26]  S. Matile,et al.  A chiral and colorful redox switch: enhanced π acidity in action. , 2010, Angewandte Chemie.

[27]  M. Mayor,et al.  Experimental evidence for the functional relevance of anion-pi interactions. , 2010, Nature chemistry.

[28]  K. Rissanen,et al.  CH-directed anion-pi interactions in the crystals of pentafluorobenzyl-substituted ammonium and pyridinium salts. , 2010, Chemistry.

[29]  R. Custelcean,et al.  Anion−π Interactions in Crystal Structures: Commonplace or Extraordinary? , 2009 .

[30]  N. Iwai,et al.  Screening of fluorinated materials degrading microbes , 2009 .

[31]  J. Azizian,et al.  Biginelli reaction for synthesis of novel trifluoromethyl derivatives of bis(tetrahydropyrimidinone)benzenes , 2008 .

[32]  J. Reedijk,et al.  Lone pair–π interactions: a new supramolecular bond? , 2008 .

[33]  De‐Xian Wang,et al.  Halide recognition by tetraoxacalix[2]arene[2]triazine receptors: concurrent noncovalent halide-pi and lone-pair-pi interactions in host-halide-water ternary complexes. , 2008, Angewandte Chemie.

[34]  G. Röschenthaler,et al.  Convenient synthesis of ethyl 4-aryl-6-(trifluoromethyl)-2-oxo-2H-pyran-3-carboxylates and 4-aryl-6-(trifluoromethyl)-2H-pyran-2-ones: novel highly reactive CF3-containing building blocks. , 2008, Organic letters.

[35]  B. Hay,et al.  Anion-arene adducts: C-H hydrogen bonding, anion-pi interaction, and carbon bonding motifs. , 2008, Chemical communications.

[36]  L. Kiss,et al.  Efficient synthesis of 2-(trifluoromethyl)nicotinic acid derivatives from simple fluorinated precursors. , 2008, Organic letters.

[37]  K. Rissanen,et al.  Structural versatility of anion-pi interactions in halide salts with pentafluorophenyl substituted cations. , 2008, Journal of the American Chemical Society.

[38]  J. Reedijk,et al.  What’s New in the Realm of Anion−π Binding Interactions? Putting the Anion−π Interaction in Perspective , 2008 .

[39]  B. List,et al.  Asymmetric counteranion-directed catalysis for the epoxidation of enals. , 2008, Angewandte Chemie.

[40]  K. Uneyama,et al.  One-pot synthesis of 3-fluoro-4-(trifluoromethyl)quinolines from pentafluoropropen-2-ol and their molecular modification. , 2008, The Journal of organic chemistry.

[41]  S. Purser,et al.  Fluorine in medicinal chemistry. , 2008, Chemical Society reviews.

[42]  M. Mąkosza,et al.  Synthesis of trifluoromethylated azines via nucleophilic oxidative substitution of hydrogen by trifluoromethyl carbanions. , 2007, The Journal of organic chemistry.

[43]  S. Teat,et al.  Anion binding involving pi-acidic heteroaromatic rings. , 2007, Accounts of chemical research.

[44]  M. Egli,et al.  Lone pair-aromatic interactions: to stabilize or not to stabilize. , 2007, Accounts of chemical research.

[45]  Orion B. Berryman,et al.  Structural criteria for the design of anion receptors: the interaction of halides with electron-deficient arenes. , 2007, Journal of the American Chemical Society.

[46]  Michael Lewis,et al.  Arene-cation interactions of positive quadrupole moment aromatics and arene-anion interactions of negative quadrupole moment aromatics. , 2006, The journal of physical chemistry. A.

[47]  M. Schlosser CF(3)-bearing aromatic and heterocyclic building blocks. , 2006, Angewandte Chemie.

[48]  M. Schlosser CF3-substituierte aromatische und heterocyclische Bausteine , 2006 .

[49]  D. O'Hagan,et al.  Fluorine in medicinal chemistry: A review of anti-cancer agents , 2006 .

[50]  D. Quiñonero,et al.  Anion–π Interactions in Cyanuric Acids: A Combined Crystallographic and Computational Study , 2005 .

[51]  K. Holman,et al.  Selective anion encapsulation by a metalated cryptophane with a pi-acidic interior. , 2005, Journal of the American Chemical Society.

[52]  D. Quiñonero,et al.  Approximate Additivity of Anion−π Interactions: An Ab Initio Study on Anion−π, Anion−π2 and Anion−π3 Complexes , 2005 .

[53]  W. R. Dolbier,et al.  Fluorine chemistry at the millennium , 2005 .

[54]  D. Quiñonero,et al.  Cation-π versus anion-π interactions: Energetic, charge transfer, and aromatic aspects , 2004 .

[55]  S. Lindeman,et al.  Halide recognition through diagnostic "anion-pi" interactions: molecular complexes of Cl-, Br-, and I- with olefinic and aromatic pi receptors. , 2004, Angewandte Chemie.

[56]  A. Osuka,et al.  Anion Binding Properties of N-Confused Porphyrins at the Peripheral Nitrogen , 2004 .

[57]  D. Quiñonero,et al.  A topological analysis of the electron density in anion-pi interactions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  B. Jiang,et al.  Zn(II)-mediated alkynylation-cyclization of o-trifluoroacetyl anilines: one-pot synthesis of 4-trifluoromethyl-substituted quinoline derivatives. , 2002, The Journal of organic chemistry.

[59]  David Quiñonero,et al.  Anion-pi Interactions: do they exist? , 2002, Angewandte Chemie.

[60]  José Elguero,et al.  Interaction of anions with perfluoro aromatic compounds. , 2002, Journal of the American Chemical Society.

[61]  Michael D Bartberger,et al.  Anion-aromatic bonding: a case for anion recognition by pi-acidic rings. , 2002, Journal of the American Chemical Society.

[62]  B. Smart Fluorine substituent effects (on bioactivity) , 2001 .

[63]  J. Atwood,et al.  Anion Binding within the Cavity of π-Metalated Calixarenes , 1997 .

[64]  Jeffrey H. Williams,et al.  The molecular electric quadrupole moment and solid-state architecture , 1993 .

[65]  H. Schneider,et al.  Attractive interactions between negative charges and polarizable aryl parts of host–guest systems , 1993 .

[66]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[67]  J. H. Williams,et al.  The electric quadrupole moments of benzene and hexafluorobenzene , 1981 .

[68]  T. Thomas,et al.  Electron distribution in trifluoromethylbenzenes. Electron donation by the trifluoromethyl group , 1975 .

[69]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[70]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[71]  A. Frontera,et al.  Towards design strategies for anion–π interactions in crystal engineering , 2016 .

[72]  K. Dunbar,et al.  Anion-pi interactions. , 2008, Chemical Society reviews.

[73]  P. Ballester Anions and π-Aromatic Systems. Do They Interact Attractively? , 2007 .

[74]  D. Quiñonero,et al.  A Theoretical ab initio Study of the Capacity of Several Binding Units for the Molecular Recognition of Anions , 2005 .

[75]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .