Optimal Coding and Sampling of Triangulations

We present a bijection between the set of plane triangulations (aka. maximal planar graphs) and a simply defined subset of plane trees with two leaves per inner node. The construction takes advantage of the minimal realizer (or Schnyder tree decomposition) of a plane triangulation. This yields a simple interpretation of the formula for the number of plane triangulations with n vertices. Moreover the construction is simple enough to induce a linear random sampling algorithm, and an explicit information theory optimal encoding.

[1]  Guy Louchard,et al.  Random Sampling from Boltzmann Principles , 2002, ICALP.

[2]  Nicholas C. Wormald,et al.  Almost All Maps Are Asymmetric , 1995, J. Comb. Theory, Ser. B.

[3]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[4]  Philippe Flajolet,et al.  A Calculus for the Random Generation of Labelled Combinatorial Structures , 1994, Theor. Comput. Sci..

[5]  Xin He,et al.  Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses , 1998, ICALP.

[6]  Jarek Rossignac,et al.  Guaranteed 3.67v bit encoding of planar triangle graphs , 1999, CCCG.

[7]  Philippe Flajolet,et al.  Planar Maps and Airy Phenomena , 2000, ICALP.

[8]  Gilles Schaeffer,et al.  Random sampling of large planar maps and convex polyhedra , 1999, STOC '99.

[9]  Gilles Schaeffer,et al.  The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .

[10]  Patrice Ossona de Mendez,et al.  Regular Orientations, Arboricity, and Augmentation , 1994, Graph Drawing.

[11]  Goos Kant,et al.  Drawing planar graphs using the lmc-ordering , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[12]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[13]  Deryk Osthus,et al.  On random planar graphs, the number of planar graphs and their triangulations , 2003, J. Comb. Theory, Ser. B.

[14]  Goos Kant,et al.  Drawing planar graphs using the canonical ordering , 1996, Algorithmica.

[15]  A. Migdal,et al.  Geometry of a two-dimensional quantum gravity: numerical study , 1991 .

[16]  Dominique Poulalhon,et al.  A bijection for triangulations of a polygon with interior points and multiple edges , 2003, Theor. Comput. Sci..

[17]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[18]  Nicolas Bonichon,et al.  Wagner's Theorem on Realizers , 2002, ICALP.

[19]  Stefan Felsner,et al.  Convex Drawings of Planar Graphs and the Order Dimension of 3-Polytopes , 2001, Order.

[20]  Z. Burda,et al.  Effective sampling of random surfaces by baby universe surgery , 1994, hep-lat/9401022.

[21]  Xin He,et al.  Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings , 1999, SIAM J. Discret. Math..

[22]  Nicolas Bonichon,et al.  An Information-Theoretic Upper Bound of Planar Graphs Using Triangulation , 2003, STACS.

[23]  Xin He,et al.  A Fast General Methodology for Information-Theoretically Optimal Encodings of Graphs , 2000, SIAM J. Comput..

[24]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[25]  Gilles Schaeffer,et al.  Bijective Census and Random Generation of Eulerian Planar Maps with Prescribed Vertex Degrees , 1997 .

[26]  Zhicheng Gao,et al.  Enumeration of Rooted Planar Triangulations with Respect to Diagonal Flips , 1999, J. Comb. Theory, Ser. A.

[27]  David Bruce Wilson,et al.  Annotated bibliography of perfectly random sampling with Markov chains , 1997, Microsurveys in Discrete Probability.

[28]  Nicolas Bonichon,et al.  A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths , 2005, Discret. Math..

[29]  Hsueh-I Lu,et al.  Linear-time compression of bounded-genus graphs into information-theoretically optimal number of bits , 2002, SODA '02.

[30]  Olivier Devillers,et al.  Progressive lossless compression of arbitrary simplicial complexes , 2002, SIGGRAPH.