Evolution of Structural DNA Nanotechnology

The research field entitled structural DNA nanotechnology emerged in the beginning of the 1980s as the first immobile synthetic nucleic acid junctions were postulated and demonstrated. Since then, the field has taken huge leaps toward advanced applications, especially during the past decade. This Progress Report summarizes how the controllable, custom, and accurate nanostructures have recently evolved together with powerful design and simulation software. Simultaneously they have provided a significant expansion of the shape space of the nanostructures. Today, researchers can select the most suitable fabrication methods, and design paradigms and software from a variety of options when creating unique DNA nanoobjects and shapes for a plethora of implementations in materials science, optics, plasmonics, molecular patterning, and nanomedicine.

[1]  Hendrik Dietz,et al.  Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami‐induced local destruction of silicon dioxide , 2015, Electrophoresis.

[2]  Mingdong Dong,et al.  DNA origami design of dolphin-shaped structures with flexible tails. , 2008, ACS nano.

[3]  Tim Liedl,et al.  M1.3--a small scaffold for DNA origami . , 2013, Nanoscale.

[4]  T. G. Martin,et al.  Cryo-EM structure of a 3D DNA-origami object , 2012, Proceedings of the National Academy of Sciences.

[5]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[6]  W. Chiu,et al.  Designer nanoscale DNA assemblies programmed from the top down , 2016, Science.

[7]  Veikko Linko,et al.  A modular DNA origami-based enzyme cascade nanoreactor. , 2015, Chemical communications.

[8]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[9]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[10]  Faisal A. Aldaye,et al.  Modular access to structurally switchable 3D discrete DNA assemblies. , 2007, Journal of the American Chemical Society.

[11]  Luvena L. Ong,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012, Science.

[12]  Hao Yan,et al.  Lattice-free prediction of three-dimensional structure of programmed DNA assemblies , 2014, Nature Communications.

[13]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[14]  Jing Pan,et al.  Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts. , 2016, ACS nano.

[15]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[16]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[17]  Ralf Seidel,et al.  Shape-controlled synthesis of gold nanostructures using DNA origami molds. , 2014, Nano letters.

[18]  Hao Yan,et al.  Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion , 2016, Nature Communications.

[19]  Arun Richard Chandrasekaran,et al.  Evolution of DNA origami scaffolds , 2016 .

[20]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[21]  H. Dietz,et al.  Placing molecules with Bohr radius resolution using DNA origami. , 2016, Nature nanotechnology.

[22]  John Jensen,et al.  Anisotropic Electroless Deposition on DNA Origami Templates To Form Small Diameter Conductive Nanowires. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[23]  A. Turberfield,et al.  DNA-templated protein arrays for single-molecule imaging. , 2011, Nano letters.

[24]  F. Simmel,et al.  Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. , 2016, ACS nano.

[25]  Wolfgang Fritzsche,et al.  Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure. , 2016, Nano letters.

[26]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[27]  Peng Yin,et al.  Genetic encoding of DNA nanostructures and their self-assembly in living bacteria , 2016, Nature Communications.

[28]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[29]  Yonggang Ke,et al.  Au nanorod helical superstructures with designed chirality. , 2015, Journal of the American Chemical Society.

[30]  V. Linko,et al.  The enabled state of DNA nanotechnology. , 2013, Current opinion in biotechnology.

[31]  K. Namba,et al.  DNA prism structures constructed by folding of multiple rectangular arms. , 2009, Journal of the American Chemical Society.

[32]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[33]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[34]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[35]  Hao Yan,et al.  3D Framework DNA Origami with Layered Crossovers. , 2016, Angewandte Chemie.

[36]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[37]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[38]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[39]  Veikko Linko,et al.  Custom-shaped metal nanostructures based on DNA origami silhouettes. , 2015, Nanoscale.

[40]  Jejoong Yoo,et al.  De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation , 2016, Nucleic acids research.

[41]  Stefan Raunser,et al.  A facile method for preparation of tailored scaffolds for DNA-origami. , 2014, Small.

[42]  Adrian Keller,et al.  Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks. , 2016, ACS applied materials & interfaces.

[43]  Hao Yan,et al.  DNA origami with double-stranded DNA as a unified scaffold. , 2012, ACS nano.

[44]  Bryan Wei,et al.  UNIQUIMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation , 2009, Nucleic acids research.

[45]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[46]  Michael Matthies,et al.  Block Copolymer Micellization as a Protection Strategy for DNA Origami. , 2017, Angewandte Chemie.

[47]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[48]  J. Reif,et al.  DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[50]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[51]  E. Winfree,et al.  Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. , 2008, Nano letters.

[52]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[53]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[54]  E. Winfree,et al.  Design and characterization of programmable DNA nanotubes. , 2004, Journal of the American Chemical Society.

[55]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[56]  P. Yin,et al.  Design space for complex DNA structures. , 2013, Journal of the American Chemical Society.

[57]  Hendrik Dietz,et al.  How We Make DNA Origami , 2017, Chembiochem : a European journal of chemical biology.

[58]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[59]  Stefan Facsko,et al.  Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[60]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[61]  Faisal A. Aldaye,et al.  Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character. , 2009, Nature nanotechnology.

[62]  Erik Winfree,et al.  An information-bearing seed for nucleating algorithmic self-assembly , 2009, Proceedings of the National Academy of Sciences.

[63]  S. Howorka,et al.  Self-assembled DNA nanopores that span lipid bilayers. , 2013, Nano letters.

[64]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[65]  N. Seeman DNA in a material world , 2003, Nature.

[66]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[67]  Reza M Zadegan,et al.  CAGE: Chromatin Analogous Gene Expression. , 2017, ACS synthetic biology.

[68]  K. Gothelf,et al.  Multilayer DNA origami packed on hexagonal and hybrid lattices. , 2012, Journal of the American Chemical Society.

[69]  Sampo Tuukkanen,et al.  One-step large-scale deposition of salt-free DNA origami nanostructures , 2015, Scientific Reports.

[70]  William M Shih,et al.  DNA nanotubes for NMR structure determination of membrane proteins , 2013, Nature Protocols.

[71]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[72]  Jie Song,et al.  Reconfiguration of DNA molecular arrays driven by information relay , 2017, Science.

[73]  F. Simmel,et al.  Surface-assisted large-scale ordering of DNA origami tiles. , 2014, Angewandte Chemie.

[74]  Hendrik Dietz,et al.  Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami , 2015, Nano letters.

[75]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[76]  Huilin Li,et al.  Lattice engineering through nanoparticle-DNA frameworks. , 2016, Nature materials.

[77]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[78]  Fei Zhang,et al.  Self-Assembly of Complex DNA Tessellations by Using Low-Symmetry Multi-arm DNA Tiles. , 2016, Angewandte Chemie.

[79]  Hélder A Santos,et al.  Cellular delivery of enzyme-loaded DNA origami. , 2016, Chemical communications.

[80]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[81]  H. Dietz,et al.  Uncovering the forces between nucleosomes using DNA origami , 2016, Science Advances.

[82]  A. Kuzyk,et al.  Characterization of the conductance mechanisms of DNA origami by AC impedance spectroscopy. , 2009, Small.

[83]  Harry M. T. Choi,et al.  Programming DNA Tube Circumferences , 2008, Science.

[84]  Faisal A. Aldaye,et al.  Loading and selective release of cargo in DNA nanotubes with longitudinal variation. , 2010, Nature chemistry.

[85]  Chenxiang Lin,et al.  Purification of DNA-origami nanostructures by rate-zonal centrifugation , 2012, Nucleic acids research.

[86]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[87]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[88]  Cameron Myhrvold,et al.  Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions. , 2013, Nano letters.

[89]  Y. Homma,et al.  Correction: Corrigendum: TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression , 2015, Nature Communications.

[90]  Jejoong Yoo,et al.  Large-Conductance Transmembrane Porin Made from DNA Origami , 2016, ACS nano.

[91]  P. Tinnefeld,et al.  Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas. , 2017, ACS nano.

[92]  Johannes B. Woehrstein,et al.  Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT , 2014, Science.

[93]  Veikko Linko,et al.  DNA-Based Enzyme Reactors and Systems , 2016, Nanomaterials.

[94]  V. Linko,et al.  Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties , 2011, Nanotechnology.

[95]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[96]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[97]  V. Brusic,et al.  Disruption of helix-capping residues 671 and 674 reveals a role in HIV-1 entry for a specialized hinge segment of the membrane proximal external region of gp41. , 2014, Journal of molecular biology.

[98]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[99]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[100]  H. Sugiyama,et al.  Programmed Two-dimensional Self- Assembly of Multiple Dna Origami Jigsaw Pieces Keywords: Dna Origami · Programmed 2d Self-assembly · Jigsaw Pieces · Nanotechnology · Fast-scanning Atomic Force Microscopy , 2022 .

[101]  Peng Yin,et al.  Developmental Self-Assembly of a DNA Tetrahedron , 2014, ACS nano.

[102]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[103]  Lei Wang,et al.  Molecular behavior of DNA origami in higher-order self-assembly. , 2010, Journal of the American Chemical Society.

[104]  Hélder A. Santos,et al.  Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility , 2017, Advanced healthcare materials.

[105]  Hao Yan,et al.  Organizing DNA origami tiles into larger structures using preformed scaffold frames. , 2011, Nano letters.

[106]  P. Yin,et al.  Complex shapes self-assembled from single-stranded DNA tiles , 2012, Nature.

[107]  S. Howorka,et al.  A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. , 2016, Nature nanotechnology.

[108]  Hao Yan,et al.  Scaffolded DNA origami of a DNA tetrahedron molecular container. , 2009, Nano letters.

[109]  Pamela E. Constantinou,et al.  Architecture with GIDEON, a program for design in structural DNA nanotechnology. , 2006, Journal of molecular graphics & modelling.

[110]  J. Reif,et al.  Design and construction of double-decker tile as a route to three-dimensional periodic assembly of DNA. , 2011, Journal of the American Chemical Society.

[111]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[112]  Hao Yan,et al.  A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. , 2006, Journal of the American Chemical Society.

[113]  Paul W K Rothemund,et al.  Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. , 2014, ACS nano.

[114]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[115]  K. Gothelf,et al.  AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures. , 2017, Angewandte Chemie.

[116]  Cees Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[117]  P. Rothemund,et al.  Engineering and mapping nanocavity emission via precision placement of DNA origami , 2016, Nature.

[118]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[119]  Friedrich C Simmel,et al.  Molecular transport through large-diameter DNA nanopores , 2016, Nature Communications.

[120]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[121]  Pekka Orponen,et al.  Computer‐Aided Production of Scaffolded DNA Nanostructures from Flat Sheet Meshes , 2016, Angewandte Chemie.

[122]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[123]  Veikko Linko,et al.  DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices. , 2015, Trends in biotechnology.

[124]  Yonggang Ke,et al.  Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. , 2012, Chemical science.

[125]  Veikko Linko,et al.  Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates. , 2016, Nanoscale.

[126]  Hendrik Dietz,et al.  Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes , 2017, Science.

[127]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[128]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[129]  Victor Pan,et al.  The Beauty and Utility of DNA Origami , 2017 .

[130]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[131]  Veikko Linko,et al.  Automated design of DNA origami , 2016, Nature Biotechnology.

[132]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[133]  Reza M Zadegan,et al.  Nucleic acid memory. , 2016, Nature materials.

[134]  Henry N. Chapman,et al.  Correction: Corrigendum: X-ray holography with a customizable reference , 2014, Nature Communications.

[135]  Peng Yin,et al.  Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. , 2012, Nature chemistry.

[136]  Yamuna Krishnan,et al.  Designing DNA nanodevices for compatibility with the immune system of higher organisms. , 2015, Nature nanotechnology.

[137]  Michael Matthies,et al.  Design and Synthesis of Triangulated DNA Origami Trusses. , 2016, Nano letters.

[138]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[139]  Peng Yin,et al.  Casting inorganic structures with DNA molds , 2014, Science.

[140]  William M. Shih,et al.  Addressing the Instability of DNA Nanostructures in Tissue Culture , 2014, ACS nano.

[141]  David J. Mooney,et al.  Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation , 2017, Nature Communications.

[142]  J. Liddle,et al.  Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA-Protein Nanostructures. , 2017, ACS nano.

[143]  Jie Chao,et al.  DNA origami-based shape IDs for single-molecule nanomechanical genotyping , 2017, Nature Communications.

[144]  J. Kjems,et al.  Complexes of DNA with fluorescent dyes are effective reagents for detection of autoimmune antibodies , 2017, Scientific Reports.

[145]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[146]  Mette D. E. Jepsen,et al.  Construction of a 4 zeptoliters switchable 3D DNA box origami. , 2012, ACS nano.

[147]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[148]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[149]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[150]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[151]  T. Liedl,et al.  Folding DNA origami from a double-stranded source of scaffold. , 2009, Journal of the American Chemical Society.

[152]  Hendrik Dietz,et al.  Nanoscale rotary apparatus formed from tight-fitting 3D DNA components , 2016, Science Advances.

[153]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.