Simultaneous Tunable Selection and Self-Assembly of Si Nanowires from Heterogeneous Feedstock.

Semiconducting nanowires (NWs) are becoming essential nanobuilding blocks for advanced devices from sensors to energy harvesters, however their full technology penetration requires large scale materials synthesis together with efficient NW assembly methods. We demonstrate a scalable one-step solution process for the direct selection, collection, and ordered assembly of silicon NWs with desired electrical properties from a poly disperse collection of NWs obtained from a supercritical fluid-liquid-solid growth process. Dielectrophoresis (DEP) combined with impedance spectroscopy provides a selection mechanism at high signal frequencies (>500 kHz) to isolate NWs with the highest conductivity and lowest defect density. The technique allows simultaneous control of five key parameters in NW assembly: selection of electrical properties, control of NW length, placement in predefined electrode areas, highly preferential orientation along the device channel, and control of NWs deposition density from few to hundreds per device. Direct correlation between DEP signal frequency and deposited NWs conductivity is confirmed by field-effect transistor and conducting AFM data. Fabricated NW transistor devices demonstrate excellent performance with up to 1.6 mA current, 10(6)-10(7) on/off ratio and hole mobility of 50 cm(2) V(-1) s(-1).

[1]  B. Korgel Twins cause kinks , 2006, Nature materials.

[2]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[3]  P. Woias,et al.  Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis , 2012 .

[4]  Brandon Cook,et al.  Conductance of kinked nanowires , 2011 .

[5]  Xiangfeng Duan,et al.  High-yield self-limiting single-nanowire assembly with dielectrophoresis. , 2010, Nature nanotechnology.

[6]  B. Yang,et al.  Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET , 2008, IEEE Electron Device Letters.

[7]  Wei Lu,et al.  Synthesis and Fabrication of High‐Performance n‐Type Silicon Nanowire Transistors , 2004 .

[8]  H. Baumgart,et al.  Self-aligned multi-channel silicon nanowire field-effect transistors , 2011, 2011 International Semiconductor Device Research Symposium (ISDRS).

[9]  B. Korgel,et al.  Importance of Solvent-Mediated Phenylsilane Decompositon Kinetics for High-Yield Solution-Phase Silicon Nanowire Synthesis , 2008 .

[10]  J. Wu,et al.  Gate coupling and charge distribution in nanowire field effect transistors. , 2007, Nano letters.

[11]  M. Shkunov,et al.  Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric , 2013, Nanotechnology.

[12]  Pengfei Dai,et al.  Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. , 2012, Nano letters.

[13]  Tobin J Marks,et al.  Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. , 2006, Journal of the American Chemical Society.

[14]  Brian A. Korgel,et al.  Rapid SFLS Synthesis of Si Nanowires Using Trisilane with In situ Alkyl-Amine Passivation , 2011 .

[15]  Greg Parker Introductory semiconductor device physics , 1994 .

[16]  B. Korgel,et al.  Precision synthesis of silicon nanowires with crystalline core and amorphous shell. , 2013, Dalton transactions.

[17]  James J Riley,et al.  Fluid flow-assisted dielectrophoretic assembly of nanowires. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[18]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[19]  H. Wong,et al.  Modeling and Analysis of Planar-Gate Electrostatic Capacitance of 1-D FET With Multiple Cylindrical Conducting Channels , 2007, IEEE Transactions on Electron Devices.

[20]  J. Kanicki,et al.  Advanced Amorphous Silicon Thin-Film Transistors for AM-OLEDs: Electrical Performance and Stability , 2008, IEEE Transactions on Electron Devices.

[21]  B. Korgel,et al.  Lamellar twinning in semiconductor nanowires , 2007 .

[22]  A. Nathan,et al.  Amorphous silicon display backplanes on plastic substrates , 2005 .

[23]  Heon-Jin Choi,et al.  Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. , 2008, Nano letters.

[24]  K. Ryan,et al.  Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Unseeded Germanium Nanowires , 2011 .

[25]  Michael P. Hughes,et al.  Nanoelectromechanics in Engineering and Biology , 2002 .

[26]  Guo-Qiang Lo,et al.  Vertical-Si-Nanowire SONOS Memory for Ultrahigh-Density Application , 2009, IEEE Electron Device Letters.

[27]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[28]  E. Mendoza,et al.  In situ and real time determination of metallic and semiconducting single-walled carbon nanotubes in suspension via dielectrophoresis , 2006 .

[29]  P. Bøggild,et al.  Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study , 2004 .

[30]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[31]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[32]  Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors , 2006, cond-mat/0612012.

[33]  Christophe Vieu,et al.  Large‐Scale Assembly of Single Nanowires through Capillary‐Assisted Dielectrophoresis , 2015, Advanced materials.

[34]  K. Leong,et al.  Vertical-Si-Nanowire-Based Nonvolatile Memory Devices With Improved Performance and Reduced Process Complexity , 2011, IEEE Transactions on Electron Devices.

[35]  I. Hill,et al.  Improved organic thin-film transistor performance using novel self-assembled monolayers , 2006 .

[36]  R. Krupke,et al.  Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes , 2004 .

[37]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[38]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[39]  C. Kisielowski,et al.  Application of Aberration-Corrected TEM and Image Simulation to Nanoelectronics and Nanotechnology , 2006, IEEE Transactions on Semiconductor Manufacturing.

[40]  F. Werner,et al.  Electrical conductivity of InN nanowires and the influence of the native indium oxide formed at their surface. , 2009, Nano letters.

[41]  Hywel Morgan,et al.  Dielectrophoretic manipulation of rod-shaped viral particles , 1997 .

[42]  O. Wunnicke,et al.  Gate capacitance of back-gated nanowire field-effect transistors , 2006 .

[43]  Dimitris E. Ioannou,et al.  Self-aligned multi-channel silicon nanowire field-effect transistors , 2011 .

[44]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[45]  Wei Lu,et al.  Fully transparent thin-film transistor devices based on SnO2 nanowires. , 2007, Nano letters.

[46]  B. Korgel,et al.  Electrostatic charging and manipulation of semiconductor nanowires , 2011 .

[47]  Zhong Lin Wang,et al.  Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. , 2006, Nano letters.

[48]  Charles M. Lieber,et al.  Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures , 2008 .

[49]  Zhiyong Fan,et al.  Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. , 2008, Nano letters.

[50]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[51]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[52]  Hossam Haick,et al.  Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. , 2012, ACS applied materials & interfaces.

[53]  Roger F. Harrington,et al.  Introduction to electromagnetic engineering , 2003 .

[54]  Brian A. Korgel,et al.  Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals , 2003 .

[55]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[56]  Ulrike Tisch,et al.  Molecular gating of silicon nanowire field-effect transistors with nonpolar analytes. , 2012, ACS nano.

[57]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[58]  K. Banerjee,et al.  Accurate Intrinsic Gate Capacitance Model for Carbon Nanotube-Array Based FETs Considering Screening Effect , 2008, IEEE Electron Device Letters.

[59]  D. Suh,et al.  The synthesis of ZnO nanowires and their subsequent use in high-current field-effect transistors formed by dielectrophoresis alignment , 2008 .

[60]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[61]  Sourobh Raychaudhuri,et al.  Precise semiconductor nanowire placement through dielectrophoresis. , 2009, Nano letters.