Theory and Applications of the Orthogonal Fast Lyapunov Indicator (OFLI and OFLI2) Methods

During the last decades the Nonlinear Dynamics field has produced a large number of numerical techniques oriented to the analysis of the behavior of the orbits in different systems. These methods are mainly focused to distinguish chaotic from regular behavior. Among the variational methods, based into the variational equations, we discuss in this paper the so-called Orthogonal Fast Lyapunov Indicator (OFLI and OFLI2) methods that are variants of the FLI method but designed to obtain also some information about the periodic orbits of the systems. We review the OFLI and OFLI2 methods and we show several computational aspects related with avoiding the appearance of spurious structures, with their use in the analysis of regular/chaotic behaviors, but also with the analysis of periodic orbits and regular regions, and with the efficient computation of the solution of the variational equations by means of Taylor series methods. Finally, the methods are shown in several Hamiltonian problems, as well as in several classical dissipative systems, as the Lorenz and Rossler models.

[1]  George F. Corliss,et al.  Solving Ordinary Differential Equations Using Taylor Series , 1982, TOMS.

[2]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[3]  Roberto Barrio,et al.  VSVO formulation of the taylor method for the numerical solution of ODEs , 2005 .

[4]  E. S. Manson Remarks on the method of least squares and its application to the determination of the solarmotion , 1917 .

[5]  Miguel A. F. Sanjuán,et al.  To Escape or not to Escape, that is the Question - perturbing the HéNon-Heiles Hamiltonian , 2012, Int. J. Bifurc. Chaos.

[6]  Roberto Barrio,et al.  Fractal structures in the Hénon-Heiles Hamiltonian , 2008 .

[7]  Roberto Barrio,et al.  Crisis curves in nonlinear business cycles , 2012 .

[8]  Elena Lega,et al.  On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows , 2002 .

[9]  P. M. Cincotta,et al.  Simple tools to study global dynamics in non-axisymmetric galactic potentials – I , 2000 .

[10]  Roberto Barrio,et al.  Spurious structures in chaos indicators maps , 2009 .

[11]  Holger R. Dullin,et al.  Extended Phase Diagram of the Lorenz Model , 2005, Int. J. Bifurc. Chaos.

[12]  Hermann Haken,et al.  At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point , 1983 .

[13]  Roberto Barrio,et al.  Sensitivity tools vs. Poincaré sections , 2005 .

[14]  Roberto Barrio,et al.  Bifurcations and safe regions in open Hamiltonians , 2009 .

[15]  Claire G. Gilmore,et al.  A new test for chaos , 1993 .

[16]  M. Viana What’s new on lorenz strange attractors? , 2000 .

[17]  Jean-Luc Thiffeault,et al.  Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. , 2000, Chaos.

[18]  Fernando Blesa,et al.  TIDES tutorial : Integrating ODEs by using the Taylor Series Method , 2011 .

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  R. Barrio,et al.  Connecting Symmetric and Asymmetric Families of Periodic Orbits in Squared Symmetric Hamiltonians , 2012 .

[21]  Andrey Shilnikov,et al.  Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[23]  Barry Saltzman,et al.  Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .

[24]  Roberto Barrio,et al.  Topological changes in periodicity hubs of dissipative systems. , 2012, Physical review letters.

[25]  John Guckenheimer,et al.  Computing Periodic Orbits and their Bifurcations with Automatic Differentiation , 2000, SIAM J. Sci. Comput..

[26]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[27]  Roberto Barrio,et al.  Periodic, escape and chaotic orbits in the Copenhagen and the (n + 1)-body ring problems , 2009 .

[28]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[29]  Roberto Barrio,et al.  Qualitative analysis of the (N + 1)-body ring problem , 2008 .

[30]  Roberto Barrio,et al.  Algorithm 924: TIDES, a Taylor Series Integrator for Differential EquationS , 2012, TOMS.

[31]  Roberto Barrio,et al.  Computing periodic orbits with arbitrary precision. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  O. Rössler An equation for continuous chaos , 1976 .

[33]  Angel Jorba,et al.  A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods , 2005, Exp. Math..

[34]  A. Rucklidge Global bifurcations in the Takens–Bogdanov normal form with D4 symmetry near the O(2) limit , 2001 .

[35]  Ernst Hairer,et al.  Achieving Brouwer’s law with implicit Runge–Kutta methods , 2008 .

[36]  Bernd Krauskopf,et al.  Global bifurcations of the Lorenz manifold , 2006 .

[37]  L. Shilnikov,et al.  NORMAL FORMS AND LORENZ ATTRACTORS , 1993 .

[38]  S. Serrano,et al.  High-Precision Continuation of Periodic Orbits , 2012 .

[39]  Philip W. Sharp,et al.  Long simulations of the Solar System: Brouwer's Law and chaos , 2005 .

[40]  Roberto Barrio,et al.  Sensitivity Analysis of ODES/DAES Using the Taylor Series Method , 2005, SIAM J. Sci. Comput..

[41]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[42]  L. A. Darriba,et al.  Comparative Study of variational Chaos indicators and ODEs' numerical integrators , 2012, Int. J. Bifurc. Chaos.

[43]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[44]  Dirk Brouwer,et al.  Erratum [On the accumulation of errors in numerical integration] , 1937 .

[45]  Roberto Barrio,et al.  Performance of the Taylor series method for ODEs/DAEs , 2005, Appl. Math. Comput..

[46]  Roberto Barrio,et al.  Behavior Patterns in multiparametric Dynamical Systems: Lorenz Model , 2012, Int. J. Bifurc. Chaos.

[47]  T. Iwai,et al.  Geometric approach to Lyapunov analysis in Hamiltonian dynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Charalampos Skokos,et al.  The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.

[49]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[50]  Roberto Barrio,et al.  Computer-assisted proof of skeletons of periodic orbits , 2012, Comput. Phys. Commun..

[51]  Georg A. Gottwald,et al.  Testing for Chaos in Deterministic Systems with Noise , 2005 .

[52]  Elena Lega,et al.  On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .

[53]  Philip W. Sharp,et al.  N-body simulations: The performance of some integrators , 2006, TOMS.

[54]  E. Lega,et al.  The numerical detection of the Arnold web and its use for long-term diffusion studies in conservative and weakly dissipative systems. , 2013, Chaos.

[55]  Philip W. Sharp,et al.  Achieving Brouwer's law with high-order Stormer multistep methods , 2005 .

[56]  Andrey Shilnikov,et al.  Kneadings, Symbolic Dynamics and Painting Lorenz Chaos , 2012, Int. J. Bifurc. Chaos.

[57]  Andrey Shilnikov,et al.  Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model , 2011, Journal of mathematical neuroscience.

[58]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[59]  Z. Galias,et al.  Computer assisted proof of chaos in the Lorenz equations , 1998 .

[60]  Roberto Barrio,et al.  A three-parametric study of the Lorenz model , 2007 .

[61]  Jacques Laskar,et al.  Frequency analysis for multi-dimensional systems: global dynamics and diffusion , 1993 .

[62]  Roberto Barrio,et al.  Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.

[63]  Sven Sahle,et al.  A robust, locally interpretable algorithm for Lyapunov exponents , 2003 .

[64]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[65]  J. Guckenheimer,et al.  Chaotic dynamics in systems with square symmetry , 1989 .

[66]  Hans-Dieter Meyer,et al.  Theory of the Liapunov exponents of Hamiltonian systems and a numerical study on the transition from regular to irregular classical motion , 1986 .

[67]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[68]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[69]  R. Barrio,et al.  On the use of chaos indicators in rigid-body motion , 2006 .

[70]  Roberto Barrio,et al.  Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems , 2009 .

[71]  James C. Sutherland,et al.  Graph-Based Software Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software , 2011, TOMS.

[72]  Frequency Analysis of a Dynamical System , 1993 .

[73]  Elena Lega,et al.  On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems , 2002 .

[74]  Roberto Barrio,et al.  Bifurcations and Chaos in Hamiltonian Systems , 2010, Int. J. Bifurc. Chaos.

[75]  Roberto Barrio,et al.  Bounds for the chaotic region in the Lorenz model , 2009 .

[76]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.