A platinum standard pan-genome resource that represents the population structure of Asian rice

[1]  G. Lin,et al.  A comparison framework and guideline of clustering methods for mass cytometry data , 2019, Genome Biology.

[2]  Arun S. Seetharam,et al.  Effect of sequence depth and length in long-read assembly of the maize inbred NC358 , 2019, bioRxiv.

[3]  Thomas Peterson,et al.  Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline , 2019, Genome Biology.

[4]  A. Paterson,et al.  Gene duplication and genetic innovation in cereal genomes , 2019, Genome research.

[5]  Martin Vingron,et al.  SVIM: structural variant identification using mapped long reads , 2018, bioRxiv.

[6]  Rod A. Wing,et al.  The rice genome revolution: from an ancient grain to Green Super Rice , 2018, Nature Reviews Genetics.

[7]  Kenneth L. McNally,et al.  Genomic variation in 3,010 diverse accessions of Asian cultivated rice , 2018, Nature.

[8]  Kenneth L. McNally,et al.  Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza , 2018, Nature Genetics.

[9]  Qun Xu,et al.  Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice , 2018, Nature Genetics.

[10]  C. T. Hoanh,et al.  Agricultural Development and Sustainable Intensification , 2018 .

[11]  Joshua A Udall,et al.  Is It Ordered Correctly? Validating Genome Assemblies by Optical Mapping[OPEN] , 2017, Plant Cell.

[12]  Feng Luo,et al.  MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads , 2017, Nature Methods.

[13]  Mark H. Wright,et al.  Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications , 2017, Rice.

[14]  Michael C. Schatz,et al.  Accurate detection of complex structural variations using single molecule sequencing , 2017, Nature Methods.

[15]  Lee Ann McCue,et al.  FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool , 2017, Bioinform..

[16]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[17]  Jordan M. Malof,et al.  Distributed solar photovoltaic array location and extent dataset for remote sensing object identification , 2016, Scientific Data.

[18]  R. Wing,et al.  Building two indica rice reference genomes with PacBio long-read and Illumina paired-end sequencing data , 2016, Scientific Data.

[19]  Rod A Wing,et al.  Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63 , 2016, Proceedings of the National Academy of Sciences.

[20]  Yang Lei,et al.  Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences , 2016, Bioinform..

[21]  M. Schatz,et al.  Phased diploid genome assembly with single-molecule real-time sequencing , 2016, Nature Methods.

[22]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[23]  M. Dugan Rice , 2015 .

[24]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[25]  rice genomes The 3,000 rice genomes project , 2014, GigaScience.

[26]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[27]  Jianying Yuan,et al.  Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects , 2013, 1308.2012.

[28]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[29]  D. Schwartz,et al.  Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data , 2013, Rice.

[30]  A. Fujiyama,et al.  A map of rice genome variation reveals the origin of cultivated rice , 2012, Nature.

[31]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[32]  M. Wopereis,et al.  Crops that feed the world 7: Rice , 2012, Food Security.

[33]  David H. Alexander,et al.  Fast model-based estimation of ancestry in unrelated individuals. , 2009, Genome research.

[34]  Kenneth L. McNally,et al.  Genomewide SNP variation reveals relationships among landraces and modern varieties of rice , 2009, Proceedings of the National Academy of Sciences.

[35]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[36]  Noah A. Rosenberg,et al.  CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure , 2007, Bioinform..

[37]  Bernard R. Baum,et al.  Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components , 1997, Plant Molecular Biology Reporter.

[38]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[39]  李佩芳 International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. , 2005 .

[40]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[41]  R. Wing,et al.  An improved method for plant BAC library construction. , 2003, Methods in molecular biology.

[42]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[43]  K. Devos,et al.  Comparative genetics in the grasses. , 1998, Plant molecular biology.

[44]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[45]  M. Gouy,et al.  Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. , 1989, Proceedings of the National Academy of Sciences of the United States of America.