An efficient approach to the design of observers for continuous-time systems with discrete-time measurements

This paper describes an efficient discretization approach for nonlinear continuous-time systems. A Carleman linearization approach is used to evaluate the exact coefficients of the Taylor-Lie expansion of the dynamics of the system. The resulting discretization scheme is used to build a discrete-time observer that displays good performance. The paper shows the advantages of using an integrated discretization - observation approach for large discretization intervals.

[1]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systemsy , 1995 .

[2]  D. Normand-Cyrot,et al.  On the linearizing feedback in nonlinear sampled data control schemes , 1986, 1986 25th IEEE Conference on Decision and Control.

[3]  W. Steeb,et al.  Nonlinear dynamical systems and Carleman linearization , 1991 .

[4]  Konrad Reif,et al.  The extended Kalman filter as an exponential observer for nonlinear systems , 1999, IEEE Trans. Signal Process..

[5]  Alfredo Germani,et al.  A robust observer for discrete time nonlinear systems , 1995 .

[6]  V. Krebs,et al.  Exact sampled data representation of continuous time nonlinear systems by finite polynomials with exactly determined coefficients , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[7]  W. Gröbner,et al.  Die Lie-Reihen und ihre Anwendungen , 1960 .

[8]  Costas Kravaris,et al.  System-theoretic properties of sampled-data representations of nonlinear systems obtained via Taylor-Lie series , 1997 .

[9]  Zeljko Bajzer,et al.  Combining Gompertzian growth and cell population dynamics. , 2003, Mathematical biosciences.

[10]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[11]  Alfredo Germani,et al.  Observer-based techniques for the identification and analysis of avascular tumor growth. , 2011, Mathematical biosciences.

[12]  Iasson Karafyllis,et al.  From Continuous-Time Design to Sampled-Data Design of Observers , 2009, IEEE Transactions on Automatic Control.

[13]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems , 1992, 1992 American Control Conference.

[14]  Alfredo Germani,et al.  The Polynomial Extended Kalman Filter as an exponential observer for nonlinear discrete-time systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[15]  Alfredo Germani,et al.  Observers for discrete-time nonlinear systems , 1993 .

[16]  Costas Kravaris,et al.  Nonlinear discrete-time observer design with linearizable error dynamics , 2003, IEEE Trans. Autom. Control..

[17]  MingQing Xiao,et al.  A direct method for the construction of nonlinear discrete-time observer with linearizable error dynamics , 2006, IEEE Transactions on Automatic Control.

[18]  Spyros A. Svoronos,et al.  Discretization of nonlinear control systems via the Carleman linearization , 1994 .

[19]  Mohamed Boutayeb,et al.  A strong tracking extended Kalman observer for nonlinear discrete-time systems , 1999, IEEE Trans. Autom. Control..

[20]  Hassan Hammouri,et al.  State equivalence of discrete-time nonlinear control systems to state affine form up to input/output injection , 1998 .

[21]  Alfredo Germani,et al.  A Discrete-time Observer Based on the Polynomial Approximation of the Inverse Observability Map , 2009 .

[22]  M. Boutayeb,et al.  Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems , 1997, IEEE Trans. Autom. Control..

[23]  Costas Kravaris,et al.  Discrete-time nonlinear observer design using functional equations , 2001 .

[24]  Emrah Biyik,et al.  A hybrid redesign of Newton observers in the absence of an exact discrete-time model , 2006, Systems & control letters (Print).

[25]  S. Monaco,et al.  On the sampling of a linear analytic control system , 1985, 1985 24th IEEE Conference on Decision and Control.

[26]  C. Kravaris,et al.  Time-discretization of nonlinear control systems via Taylor methods , 1999 .

[27]  Paolo Castorina,et al.  Tumor Gompertzian growth by cellular energetic balance , 2004, q-bio/0407018.