DiCoExpress: a tool to process multifactorial RNAseq experiments from quality controls to co-expression analysis through differential analysis based on contrasts inside GLM models

[1]  M. Seki,et al.  Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress , 2019, F1000Research.

[2]  N. Ratner,et al.  iGEAK: an interactive gene expression analysis kit for seamless workflow using the R/shiny platform , 2019, BMC Genomics.

[3]  V. Brunaud,et al.  Silicon supply affects the root transcriptome of Brassica napus L. , 2019, Planta.

[4]  M. Martin-Magniette,et al.  Novel Cytonuclear Combinations Modify Arabidopsis thaliana Seed Physiology and Vigor , 2019, Front. Plant Sci..

[5]  Onur Yukselen,et al.  DEBrowser: interactive differential expression analysis and visualization tool for count data , 2018, bioRxiv.

[6]  J. Coppee,et al.  Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica , 2018, Scientific Reports.

[7]  M. Harnett,et al.  IL-33/ST2 signalling and crosstalk with FcεRI and TLR4 is targeted by the parasitic worm product, ES-62 , 2018, Scientific Reports.

[8]  Qin Zhu,et al.  PIVOT: platform for interactive analysis and visualization of transcriptomics data , 2016, BMC Bioinformatics.

[9]  C. K. Chan,et al.  The pangenome of hexaploid bread wheat , 2017, The Plant journal : for cell and molecular biology.

[10]  Yan Li,et al.  DEApp: an interactive web interface for differential expression analysis of next generation sequence data , 2017, Source Code for Biology and Medicine.

[11]  Marie-Liesse Asselin-Labat,et al.  Glimma: interactive graphics for gene expression analysis , 2017, bioRxiv.

[12]  Cathy Maugis,et al.  Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis , 2016, Briefings Bioinform..

[13]  Jonathan W. Nelson,et al.  The START App: a web‐based RNAseq analysis and visualization resource , 2016, Bioinform..

[14]  Johanna Hardin,et al.  Selecting between‐sample RNA‐Seq normalization methods from the perspective of their assumptions , 2016, Briefings Bioinform..

[15]  Xiaoling Dun,et al.  Comparative Transcriptome Analysis of Primary Roots of Brassica napus Seedlings with Extremely Different Primary Root Lengths Using RNA Sequencing , 2016, Front. Plant Sci..

[16]  Cathy Maugis,et al.  Transformation and model choice for RNA-seq co-expression analysis , 2016, bioRxiv.

[17]  Monther Alhamdoosh,et al.  RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR , 2016, F1000Research.

[18]  G. Barton,et al.  How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? , 2015, RNA.

[19]  Francesco Russo,et al.  Advancements in RNASeqGUI towards a Reproducible Analysis of RNA-Seq Experiments , 2016, BioMed research international.

[20]  Rahul Reddy,et al.  A Comparison of Methods: Normalizing High-Throughput RNA Sequencing Data , 2015, bioRxiv.

[21]  Nathan M. Springer,et al.  Reassess the t Test: Interact with All Your Data via ANOVA , 2015, Plant Cell.

[22]  Marie-Agnès Dillies,et al.  SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data , 2015, bioRxiv.

[23]  Gilles Celeux,et al.  Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models , 2015, Bioinform..

[24]  D. Twell,et al.  A decade of pollen transcriptomics , 2015, Plant Reproduction.

[25]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[26]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[27]  A. Tyagi,et al.  Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding , 2014, Biotechnology journal.

[28]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[29]  Tristan Mary-Huard,et al.  GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response , 2014, Nucleic Acids Res..

[30]  Claudia Angelini,et al.  RNASeqGUI: a GUI for analysing RNA-Seq data , 2014, Bioinform..

[31]  M. Martin-Magniette,et al.  Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences , 2014, Genome Biology.

[32]  Yung-Tsi Bolon,et al.  Legume genomics: understanding biology through DNA and RNA sequencing. , 2014, Annals of botany.

[33]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[34]  Nicolas Servant,et al.  A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis , 2013, Briefings Bioinform..

[35]  Sapna Kumari,et al.  Evaluation of Gene Association Methods for Coexpression Network Construction and Biological Knowledge Discovery , 2012, PloS one.

[36]  Mark Stitt,et al.  RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics , 2012, Nucleic Acids Res..

[37]  Davis J. McCarthy,et al.  Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation , 2012, Nucleic acids research.

[38]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[39]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[40]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[41]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[42]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[43]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[44]  Xin Chen,et al.  PlantTFDB: a comprehensive plant transcription factor database , 2007, Nucleic Acids Res..

[45]  Patrik D'haeseleer,et al.  How does gene expression clustering work? , 2005, Nature Biotechnology.

[46]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[47]  S. Rhee,et al.  MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. , 2004, The Plant journal : for cell and molecular biology.

[48]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[49]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.