The spectrin repeat folds into a three‐helix bundle in solution

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  M. Saraste,et al.  Does Vav bind to F‐actin through a CH domain? , 1995, FEBS letters.

[3]  A. Pastore,et al.  Molecular mechanism of the calcium‐induced conformational change in the spectrin EF‐hands. , 1995, The EMBO journal.

[4]  Eric Oldfield,et al.  1H, 13C and 15N chemical shift referencing in biomolecular NMR , 1995, Journal of biomolecular NMR.

[5]  A. Palmer,et al.  Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. , 1995, Journal of molecular biology.

[6]  R. Yu,et al.  The first human alpha-spectrin structural domain begins with serine. , 1994, The Journal of biological chemistry.

[7]  Michael Nilges,et al.  Structure of the pleckstrin homology domain from β-spectrin , 1994, Nature.

[8]  J. Keeler,et al.  Minimizing Sensitivity Losses in Gradient-Selected 15N-1H HSQC Spectra of Proteins , 1994 .

[9]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[10]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[11]  E. Zuiderweg,et al.  Improved 13C-Resolved HSQC-NOESY Spectra in H2O, Using Pulsed Field Gradients , 1993 .

[12]  Vladimir Sklenar,et al.  Gradient-Tailored Water Suppression for 1H-15N HSQC Experiments Optimized to Retain Full Sensitivity , 1993 .

[13]  R A Smith,et al.  Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4. , 1992, Biochemistry.

[14]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[15]  Andrea Musacchio,et al.  Crystal structure of a Src-homology 3 (SH3) domain , 1992, Nature.

[16]  M Ikura,et al.  Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. , 1992, Biochemistry.

[17]  D A Parry,et al.  Analysis of the three-alpha-helix motif in the spectrin superfamily of proteins. , 1992, Biophysical journal.

[18]  L. Kay,et al.  Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins , 1992 .

[19]  G. Wagner,et al.  A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N13C-labelled proteins , 1992 .

[20]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[21]  S. Grzesiek,et al.  Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein , 1992 .

[22]  D. Branton,et al.  Phasing the conformational unit of spectrin. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[24]  A. Pastore,et al.  The relationship between chemical shift and secondary structure in proteins , 1990 .

[25]  F. Costa,et al.  Point mutation in the beta-spectrin gene associated with alpha I/74 hereditary elliptocytosis. Implications for the mechanism of spectrin dimer self-association. , 1990, The Journal of clinical investigation.

[26]  Paul C. Driscoll,et al.  Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins , 1990 .

[27]  L. Kay,et al.  Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. , 1989, Biochemistry.

[28]  Ad Bax,et al.  Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins , 1989 .

[29]  P. V. von Hippel,et al.  Calculation of protein extinction coefficients from amino acid sequence data. , 1989, Analytical biochemistry.

[30]  M. Saraste,et al.  Primary structure of the brain alpha-spectrin [published erratum appears in J Cell Biol 1989 Mar;108(3):following 1175] , 1989, The Journal of cell biology.

[31]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[32]  D. Branton,et al.  The molecular basis of erythrocyte shape. , 1986, Science.

[33]  K Wüthrich,et al.  Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. , 1984, Journal of molecular biology.

[34]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[35]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[36]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[37]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results , 1982 .

[38]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[39]  A. Pastore,et al.  The C-terminal domain of alpha-spectrin is structurally related to calmodulin. , 1995, European journal of biochemistry.

[40]  T. Laue,et al.  Modern Analytical Ultracentrifugation , 1994, Emerging Biochemical and Biophysical Techniques.

[41]  A. Minton Conservation of Signal: A New Algorithm for the Elimination of the Reference Concentration as an Independently Variable Parameter in the Analysis of Sedimentation Equilibrium , 1994 .

[42]  D. Gilligan,et al.  The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. , 1993, Annual review of cell biology.

[43]  Arthur J. Rowe,et al.  Analytical ultracentrifugation in biochemistry and polymer science , 1992 .

[44]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.

[45]  L. Kay,et al.  New methods for the measurement of NHCαH coupling constants in 15N-labeled proteins , 1990 .