Sample, computation vs storage tradeoffs for classification using tensor subspace models

In this paper, we exhibit the tradeoffs between the (training) sample, computation and storage complexity for the problem of supervised classification using signal subspace estimation. Our main tool is the use of tensor subspaces, i.e. subspaces with a Kronecker structure, for embedding the data into lower dimensions. Among the subspaces with a Kronecker structure, we show that using subspaces with a hierarchical structure for representing data leads to improved tradeoffs. One of the main reasons for the improvement is that embedding data into these hierarchical Kronecker structured subspaces prevents overfitting at higher latent dimensions.

[1]  Bart Vandereycken,et al.  The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.

[2]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[3]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[4]  T. Kolda Multilinear operators for higher-order decompositions , 2006 .

[5]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[6]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[7]  Hiroshi Murase,et al.  Subspace methods for robot vision , 1996, IEEE Trans. Robotics Autom..

[8]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[9]  Haiping Lu,et al.  A survey of multilinear subspace learning for tensor data , 2011, Pattern Recognit..

[10]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[11]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[12]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[13]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[14]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[15]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.