On second-order sliding-mode control of fractional-order dynamics

A second-order sliding mode control scheme is developed to stabilize a class of linear uncertain fractional-order dynamics. After making a suitable transformation that simplifies the sliding manifold design, a chattering-free second order sliding mode approach that accomplishes the control task by means of a continuous control action is developed. Simple controller tuning formulas are constructively developed along the paper by Lyapunov analysis. The simulation results confirm the expected performance.

[1]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[2]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[3]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[4]  Maamar Bettayeb,et al.  A sliding mode control for linear fractional systems with input and state delays , 2009 .

[5]  Samir Ladaci,et al.  On Fractional Adaptive Control , 2006 .

[6]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[7]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[8]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[9]  Hyo-Sung Ahn,et al.  Robust Controllability of Interval Fractional Order Linear Time Invariant Systems , 2005 .

[10]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[11]  O. Agrawal,et al.  A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems , 2007 .

[12]  Stevan Pilipović,et al.  A diffusion wave equation with two fractional derivatives of different order , 2007 .

[13]  Alain Oustaloup,et al.  On the CRONE Suspension , 2014 .

[14]  B. West Fractional Calculus in Bioengineering , 2007 .

[15]  Cosku Kasnakoglu,et al.  A fractional adaptation law for sliding mode control , 2008 .

[16]  Teodor M. Atanackovic,et al.  On a distributed derivative model of a viscoelastic body , 2003 .

[17]  Mehmet Önder Efe,et al.  Fractional Order Sliding Mode Controller Design for Fractional Order Dynamic Systems , 2010 .

[18]  Yangquan Chen,et al.  Robust controllability of interval fractional order linear time invariant systems , 2006, Signal Process..

[19]  S. V. Emel'yanov,et al.  High-order sliding modes in control systems , 1996 .

[20]  Duarte Valério,et al.  Fractional sliding mode control , 2012 .

[21]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[22]  Mohammad Saleh Tavazoei,et al.  A note on the stability of fractional order systems , 2009, Math. Comput. Simul..

[23]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[24]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[25]  G. Bartolini,et al.  Modern sliding mode control theory : new perspectives and applications , 2008 .

[26]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .