Polarimetry for Weather Surveillance Radars

This paper is an overview of weather radar polarimetry emphasizing surveillance applications. The following potential benefits to operations are identified: improvement of quantitative precipitation measurements, discrimination of hail from rain with possible determination of sizes, identification of precipitation in winter storms, identification of electrically active storms, and distinction of biological scatterers (birds vs insects). Success in rainfall measurements is attributed to unique properties of differential phase. Referrals to fields of various polarimetric variables illustrate the signatures associated with different phenomena. It is argued that classifying hydrometeors is a necessary step prior to proper quantification of the water substance. The promise of polarimetry to accomplish classification is illustrated with an application to a hailstorm.

[1]  Alexander V. Ryzhkov,et al.  Discrimination between Rain and Snow with a Polarimetric Radar , 1998 .

[2]  Dusan Zrnic,et al.  Observations of insects and birds with a polarimetric radar , 1998, IEEE Trans. Geosci. Remote. Sens..

[3]  P. Meischner,et al.  Advanced weather radar systems in Europe : The COST 75 action , 1997 .

[4]  J. Metcalf Temporal and Spatial Variations of Hydrometeor Orientations in Thunderstorms , 1997 .

[5]  Alexander V. Ryzhkov,et al.  Assessment of Rainfall Measurement That Uses Specific Differential Phase , 1996 .

[6]  V. Chandrasekar,et al.  Time-varying ice crystal orientation in thunderstorms observed with multiparameter radar , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  A. Ryzhkov,et al.  Polarimetric method for ice water content determination , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[8]  Alexander V. Ryzhkov,et al.  Advantages of Rain Measurements Using Specific Differential Phase , 1996 .

[9]  P. Krehbiel,et al.  The use of dual channel circular-polarization radar observations for remotely sensing storm electrification , 1996 .

[10]  Sergey Y. Matrosov,et al.  Radar and Radiation Properties of Ice Clouds , 1995 .

[11]  Alexander V. Ryzhkov,et al.  Precipitation and Attenuation Measurements at a 10-cm Wavelength , 1995 .

[12]  Alexander V. Ryzhkov,et al.  Comparison of Dual-Polarization Radar Estimators of Rain , 1995 .

[13]  J. Mendel Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.

[14]  V. N. Bringi,et al.  Rain-Rate Estimation in the Presence of Hail Using S-Band Specific Differential Phase and Other Radar Parameters , 1995 .

[15]  A. V. Ryzhkov,et al.  Preliminary Results of X-Band Polarization Radar Studies of Clouds and Precipitation , 1994 .

[16]  Martin Hagen,et al.  Polarimetric radar studies of atmospheric ice particles , 1994, IEEE Trans. Geosci. Remote. Sens..

[17]  J. Metcalf Observation of the Effects of Changing Electric Fields on the Orientation of Hydrometeors in a Thunderstorm , 1993 .

[18]  Paul H. Herzegh,et al.  Observing Precipitation through Dual-Polarization Radar Measurements , 1992 .

[19]  Koray Aydin,et al.  C-Band Dual-Polarization Radar Observables in Rain , 1992 .

[20]  R. Stewart,et al.  Precipitation types in the transition region of winter storms , 1992 .

[21]  A. R. Jameson A comparison of microwave techniques for measuring rainfall , 1991 .

[22]  D. Zrnic,et al.  Dependence of Reflectivity Factor—Rainfall Rate Relationship on Polarization , 1990 .

[23]  N. Balakrishnan,et al.  Estimation of Rain and Hail Rates in Mixed-Phase Precipitation , 1990 .

[24]  V. N. Bringi,et al.  Technology of Polarization Diversity Radars for Meteorology , 1990 .

[25]  M. Sachidananda,et al.  Rain Rate Estimates from Differential Polarization Measurements , 1987 .

[26]  W. Moninger,et al.  A Technique to Measure Entrainment in Cloud by Dual-Polarization Radar and Chaff , 1987 .

[27]  Venkatramani Balaji,et al.  Remote Sensing of Hail with a Dual Linear Polarization Radar , 1986 .

[28]  H. Direskeneli,et al.  Disdrometer Measurements during an Intense Rainfall Event in Central Illinois: Implications for Differential Reflectivity Radar Observations , 1986 .

[29]  D. S. Zrnic,et al.  Differential propagation phase shift and rainfall rate estimation , 1986 .

[30]  Ronald P. Larkin,et al.  Insects Observed Using Dual-Polarization Radar , 1985 .

[31]  V. Bringi,et al.  Hail Detection with a Differential Reflectivity Radar , 1984, Science.

[32]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[33]  A. R. Jameson Microphysical Interpretation of Multi-Parameter Radar Measurements in Rain. Part I: Interpretation of Polarization Measurements and Estimation of Raindrop Shapes. , 1983 .

[34]  W. D. Rust,et al.  Doppler radar echoes of lightning and precipitation at vertical incidence , 1982 .

[35]  G. Mccormick,et al.  Radar observations of the alignment of precipitation particles by electrostatic fields in thunderstorms , 1976 .

[36]  V. N. Bringi,et al.  Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation , 1976 .

[37]  Louis J. Battan,et al.  Radar Observation of the Atmosphere , 1973 .