The horizon of the McVittie black hole: on the role of the cosmic fluid modeling
暂无分享,去创建一个
[1] S. Capozziello,et al. Extended gravity cosmography , 2019, International Journal of Modern Physics D.
[2] Y. Ong,et al. Curvature invariants and lower dimensional black hole horizons , 2019, The European Physical Journal C.
[3] S. Capozziello,et al. Effective field description of the Anton-Schmidt cosmic fluid , 2018, Physical Review D.
[4] A. Chael,et al. Event Horizon Telescope Results . IV . Imaging the Central Supermassive Black Hole , 2019 .
[5] A. Coley,et al. Geometric horizons in the Kastor-Traschen multi-black-hole solutions , 2018, Physical Review D.
[6] S. Capozziello,et al. Cosmic acceleration from a single fluid description , 2017, Physics of the Dark Universe.
[7] A. Coley,et al. Identification of black hole horizons using scalar curvature invariants , 2017, 1710.08773.
[8] A. Coley,et al. Geometric Horizons , 2017, 1710.08457.
[9] A. Coley,et al. Cartan invariants and event horizon detection , 2017 .
[10] D. Page,et al. Scalar Polynomial Curvature Invariant Vanishing on the Event Horizon of Any Black Hole Metric Conformal to a Static Spherical Metric , 2017, 1704.02461.
[11] A. Sa̧dowski,et al. Unifying the Micro and Macro Properties of AGN Feeding and Feedback , 2017, 1701.07030.
[12] A. Grazian,et al. First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S , 2016, 1603.08522.
[13] A. Prain,et al. Understanding dynamical black hole apparent horizons , 2015, 1511.07775.
[14] F. Tombesi,et al. MAGNETICALLY DRIVEN ACCRETION DISK WINDS AND ULTRA-FAST OUTFLOWS IN PG 1211+143 , 2015, 1503.04074.
[15] D. Page,et al. Local invariants vanishing on stationary horizons: a diagnostic for locating black holes. , 2015, Physical review letters.
[16] K. Lake,et al. Invariant characterization of the Kerr spacetime: Locating the horizon and measuring the mass and spin of rotating black holes using curvature invariants , 2014, 1412.8757.
[17] R. Somerville,et al. Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.
[18] Timothy Heckman,et al. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe , 2014, 1403.4620.
[19] N. Riazi,et al. Dark side of the universe in the Stephani cosmology , 2014, 1401.2429.
[20] U. Maryland,et al. Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers , 2012, 1212.4851.
[21] Andrew C. Fabian,et al. Observational Evidence of Active Galactic Nuclei Feedback , 2012 .
[22] V. Faraoni,et al. Making sense of the bizarre behavior of horizons in the McVittie spacetime , 2012, 1202.0719.
[23] F. Tombesi,et al. Evidence for ultrafast outflows in radio-quiet AGNs — III. Location and energetics , 2012, 1201.1897.
[24] George Ellis,et al. Does the growth of structure affect our dynamical models of the Universe? The averaging, backreaction, and fitting problems in cosmology , 2011, 1109.2314.
[25] M. Hobson,et al. The effect of an expanding universe on massive objects , 2011, 1104.4458.
[26] M. Hobson,et al. The effect of a massive object on an expanding universe , 2011, 1104.4447.
[27] N. Kaloper,et al. McVittie's Legacy: Black Holes in an Expanding Universe , 2010, 1003.4777.
[28] K. Maeda,et al. Black holes in an expanding universe. , 2009, Physical review letters.
[29] D. Giulini,et al. Influence of global cosmological expansion on local dynamics and kinematics , 2008, 0810.2712.
[30] M. Jamil,et al. Primordial black holes in phantom cosmology , 2009, 0908.0444.
[31] M. Jamil. Evolution of a Schwarzschild black hole in phantom-like Chaplygin gas cosmologies , 2009, 0906.2875.
[32] USA,et al. SELF-CONSISTENT MODELS OF THE AGN AND BLACK HOLE POPULATIONS: DUTY CYCLES, ACCRETION RATES, AND THE MEAN RADIATIVE EFFICIENCY , 2007, 0710.4488.
[33] V. Faraoni,et al. Cosmological expansion and local physics , 2007, 0707.1350.
[34] M. Volonteri. Massive black holes: formation and evolution , 2006, Proceedings of the International Astronomical Union.
[35] S. Capozziello,et al. Beyond the perfect fluid hypothesis for the dark energy equation of state , 2005, astro-ph/0511528.
[36] R. O’Shaughnessy,et al. Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.
[37] Edinburgh,et al. Simulating the joint evolution of quasars, galaxies and their large-scale distribution , 2005, astro-ph/0504097.
[38] B. Krishnan,et al. Isolated and Dynamical Horizons and Their Applications , 2004, Living reviews in relativity.
[39] P. Hut,et al. Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.
[40] V. Dokuchaev,et al. Black hole mass decreasing due to phantom energy accretion. , 2004, Physical review letters.
[41] M. Visser. Jerk, snap, and the cosmological equation of state , 2003, gr-qc/0309109.
[42] A. Starobinsky,et al. Exploring the expanding Universe and dark energy using the statefinder diagnostic , 2003, astro-ph/0303009.
[43] A. Starobinsky,et al. Statefinder—A new geometrical diagnostic of dark energy , 2002, astro-ph/0201498.
[44] J. Lasota,et al. No observational proof of the black-hole event-horizon , 2002, astro-ph/0207270.
[45] O. Bertolami,et al. Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification , 2002, gr-qc/0202064.
[46] A. Loeb,et al. Constraining Cosmological Parameters Based on Relative Galaxy Ages , 2001, astro-ph/0106145.
[47] R. Penrose,et al. Gravitational Collapse : The Role of General Relativity 1 , 2002 .
[48] V. Mukhanov,et al. Perturbations in k-inflation , 1999, hep-th/9904176.
[49] B. Nolan. A point mass in an isotropic universe: II. Global properties , 1999 .
[50] T. Chiba,et al. The Luminosity Distance, the Equation of State, and the Geometry of the Universe , 1998, astro-ph/9808022.
[51] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[52] B. Nolan. A point mass in an isotropic universe: existence, uniqueness, and basic properties , 1998, gr-qc/9805041.
[53] Henk van Elst,et al. Cosmological models: Cargese lectures 1998 , 1998 .
[54] Hayward,et al. Quasilocal gravitational energy. , 1993, Physical review. D, Particles and fields.
[55] R. Wagoner,et al. Diskoseismology: Probing Accretion Disks. I. Trapped Adiabatic Oscillations , 1991 .
[56] V. Gurzadyan,et al. Accretion on massive black holes in galactic nuclei , 1979, Nature.
[57] D. Peng,et al. A New Two-Constant Equation of State , 1976 .
[58] D. Lynden-Bell,et al. The Evolution of viscous discs and the origin of the nebular variables. , 1974 .
[59] S. Hawking,et al. Black hole explosions? , 1974, Nature.
[60] F. Curtis Michel,et al. Accretion of matter by condensed objects , 1971 .
[61] A. G. Greenhill,et al. Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .
[62] S. Hawking. GRAVITATIONAL RADIATION IN AN EXPANDING UNIVERSE. , 1968 .
[63] O. Redlich,et al. On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.
[64] J. Oppenheimer,et al. On Massive neutron cores , 1939 .
[65] G. Mcvittie. The Mass-Particle in an Expanding Universe , 1933 .
[66] F. Kottler. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie , 1918 .
[67] C. Dieterici. Ueber den kritischen Zustand , 1899 .