The horizon of the McVittie black hole: on the role of the cosmic fluid modeling

[1]  S. Capozziello,et al.  Extended gravity cosmography , 2019, International Journal of Modern Physics D.

[2]  Y. Ong,et al.  Curvature invariants and lower dimensional black hole horizons , 2019, The European Physical Journal C.

[3]  S. Capozziello,et al.  Effective field description of the Anton-Schmidt cosmic fluid , 2018, Physical Review D.

[4]  A. Chael,et al.  Event Horizon Telescope Results . IV . Imaging the Central Supermassive Black Hole , 2019 .

[5]  A. Coley,et al.  Geometric horizons in the Kastor-Traschen multi-black-hole solutions , 2018, Physical Review D.

[6]  S. Capozziello,et al.  Cosmic acceleration from a single fluid description , 2017, Physics of the Dark Universe.

[7]  A. Coley,et al.  Identification of black hole horizons using scalar curvature invariants , 2017, 1710.08773.

[8]  A. Coley,et al.  Geometric Horizons , 2017, 1710.08457.

[9]  A. Coley,et al.  Cartan invariants and event horizon detection , 2017 .

[10]  D. Page,et al.  Scalar Polynomial Curvature Invariant Vanishing on the Event Horizon of Any Black Hole Metric Conformal to a Static Spherical Metric , 2017, 1704.02461.

[11]  A. Sa̧dowski,et al.  Unifying the Micro and Macro Properties of AGN Feeding and Feedback , 2017, 1701.07030.

[12]  A. Grazian,et al.  First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S , 2016, 1603.08522.

[13]  A. Prain,et al.  Understanding dynamical black hole apparent horizons , 2015, 1511.07775.

[14]  F. Tombesi,et al.  MAGNETICALLY DRIVEN ACCRETION DISK WINDS AND ULTRA-FAST OUTFLOWS IN PG 1211+143 , 2015, 1503.04074.

[15]  D. Page,et al.  Local invariants vanishing on stationary horizons: a diagnostic for locating black holes. , 2015, Physical review letters.

[16]  K. Lake,et al.  Invariant characterization of the Kerr spacetime: Locating the horizon and measuring the mass and spin of rotating black holes using curvature invariants , 2014, 1412.8757.

[17]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[18]  Timothy Heckman,et al.  The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe , 2014, 1403.4620.

[19]  N. Riazi,et al.  Dark side of the universe in the Stephani cosmology , 2014, 1401.2429.

[20]  U. Maryland,et al.  Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers , 2012, 1212.4851.

[21]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[22]  V. Faraoni,et al.  Making sense of the bizarre behavior of horizons in the McVittie spacetime , 2012, 1202.0719.

[23]  F. Tombesi,et al.  Evidence for ultrafast outflows in radio-quiet AGNs — III. Location and energetics , 2012, 1201.1897.

[24]  George Ellis,et al.  Does the growth of structure affect our dynamical models of the Universe? The averaging, backreaction, and fitting problems in cosmology , 2011, 1109.2314.

[25]  M. Hobson,et al.  The effect of an expanding universe on massive objects , 2011, 1104.4458.

[26]  M. Hobson,et al.  The effect of a massive object on an expanding universe , 2011, 1104.4447.

[27]  N. Kaloper,et al.  McVittie's Legacy: Black Holes in an Expanding Universe , 2010, 1003.4777.

[28]  K. Maeda,et al.  Black holes in an expanding universe. , 2009, Physical review letters.

[29]  D. Giulini,et al.  Influence of global cosmological expansion on local dynamics and kinematics , 2008, 0810.2712.

[30]  M. Jamil,et al.  Primordial black holes in phantom cosmology , 2009, 0908.0444.

[31]  M. Jamil Evolution of a Schwarzschild black hole in phantom-like Chaplygin gas cosmologies , 2009, 0906.2875.

[32]  USA,et al.  SELF-CONSISTENT MODELS OF THE AGN AND BLACK HOLE POPULATIONS: DUTY CYCLES, ACCRETION RATES, AND THE MEAN RADIATIVE EFFICIENCY , 2007, 0710.4488.

[33]  V. Faraoni,et al.  Cosmological expansion and local physics , 2007, 0707.1350.

[34]  M. Volonteri Massive black holes: formation and evolution , 2006, Proceedings of the International Astronomical Union.

[35]  S. Capozziello,et al.  Beyond the perfect fluid hypothesis for the dark energy equation of state , 2005, astro-ph/0511528.

[36]  R. O’Shaughnessy,et al.  Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.

[37]  Edinburgh,et al.  Simulating the joint evolution of quasars, galaxies and their large-scale distribution , 2005, astro-ph/0504097.

[38]  B. Krishnan,et al.  Isolated and Dynamical Horizons and Their Applications , 2004, Living reviews in relativity.

[39]  P. Hut,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[40]  V. Dokuchaev,et al.  Black hole mass decreasing due to phantom energy accretion. , 2004, Physical review letters.

[41]  M. Visser Jerk, snap, and the cosmological equation of state , 2003, gr-qc/0309109.

[42]  A. Starobinsky,et al.  Exploring the expanding Universe and dark energy using the statefinder diagnostic , 2003, astro-ph/0303009.

[43]  A. Starobinsky,et al.  Statefinder—A new geometrical diagnostic of dark energy , 2002, astro-ph/0201498.

[44]  J. Lasota,et al.  No observational proof of the black-hole event-horizon , 2002, astro-ph/0207270.

[45]  O. Bertolami,et al.  Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification , 2002, gr-qc/0202064.

[46]  A. Loeb,et al.  Constraining Cosmological Parameters Based on Relative Galaxy Ages , 2001, astro-ph/0106145.

[47]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[48]  V. Mukhanov,et al.  Perturbations in k-inflation , 1999, hep-th/9904176.

[49]  B. Nolan A point mass in an isotropic universe: II. Global properties , 1999 .

[50]  T. Chiba,et al.  The Luminosity Distance, the Equation of State, and the Geometry of the Universe , 1998, astro-ph/9808022.

[51]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[52]  B. Nolan A point mass in an isotropic universe: existence, uniqueness, and basic properties , 1998, gr-qc/9805041.

[53]  Henk van Elst,et al.  Cosmological models: Cargese lectures 1998 , 1998 .

[54]  Hayward,et al.  Quasilocal gravitational energy. , 1993, Physical review. D, Particles and fields.

[55]  R. Wagoner,et al.  Diskoseismology: Probing Accretion Disks. I. Trapped Adiabatic Oscillations , 1991 .

[56]  V. Gurzadyan,et al.  Accretion on massive black holes in galactic nuclei , 1979, Nature.

[57]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[58]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[59]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[60]  F. Curtis Michel,et al.  Accretion of matter by condensed objects , 1971 .

[61]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[62]  S. Hawking GRAVITATIONAL RADIATION IN AN EXPANDING UNIVERSE. , 1968 .

[63]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[64]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[65]  G. Mcvittie The Mass-Particle in an Expanding Universe , 1933 .

[66]  F. Kottler Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie , 1918 .

[67]  C. Dieterici Ueber den kritischen Zustand , 1899 .