Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations
暂无分享,去创建一个
[1] Yasutaro Uesaka,et al. Direct Solution of the Landau-Lifshitz-Gilbert Equation for Micromagnetics , 1989 .
[2] I. Fonseca,et al. A Γ‐convergence result for the two‐gradient theory of phase transitions , 2002 .
[3] L. Evans. Measure theory and fine properties of functions , 1992 .
[4] G. Carbou. Regularity for critical points of a non local energy , 1997 .
[5] Sisto Baldo,et al. Asymptotic behavior of the Landau—Lifshitz model of ferromagnetism , 1991 .
[6] Antonio DeSimone,et al. Energy minimizers for large ferromagnetic bodies , 1993 .
[7] P. Jabin,et al. Compactness in Ginzburg‐Landau energy by kinetic averaging , 2001 .
[8] D. Kinderlehrer,et al. Some Regularity Results In Ferromagnetism , 1999 .
[9] Benoît Perthame,et al. Line-energy Ginzburg-Landau models: zero-energy states , 2002 .
[10] David Kinderlehrer,et al. Frustration in ferromagnetic materials , 1990 .
[11] P. Sternberg. The effect of a singular perturbation on nonconvex variational problems , 1988 .
[12] Yoshikazu Giga,et al. On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[13] F. Otto,et al. A compactness result in the gradient theory of phase transitions , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[14] Robert V. Kohn,et al. Singular Perturbation and the Energy of Folds , 2000, J. Nonlinear Sci..
[15] Antonio De Simone,et al. Energy minimizers for large ferromagnetic bodies , 1993 .
[16] Camillo De Lellis,et al. Line energies for gradient vector fields in the plane , 1999 .
[17] L. Ambrosio,et al. A viscosity property of minimizing micromagnetic configurations , 2003 .
[18] B. Dacorogna,et al. Minima absolus pour des énergies ferromagnétiques , 2000 .
[19] Regularity for micromagnetic configurations having zero jump energy , 2002 .
[20] A. Hubert,et al. Magnetic ground state of a thin-film element , 2000 .
[21] Robert V. Kohn,et al. A reduced theory for thin‐film micromagnetics , 2002 .
[22] Itai Shafrir,et al. ON NEMATICS STABILIZED BY A LARGE EXTERNAL FIELD , 1999 .
[23] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[24] Yoshikazu Giga,et al. A mathematical problem related to the physical theory of liquid crystal configurations , 1987 .
[25] F. Béthuel,et al. Density of Smooth Functions between Two Manifolds in Sobolev Spaces , 1988 .
[26] S. Serfaty,et al. Compactness, Kinetic Formulation, and Entropies for a Problem Related to Micromagnetics , 2003 .
[27] Augusto Visintin,et al. On Landau-Lifshitz’ equations for ferromagnetism , 1985 .
[28] H. A. M. van den Berg,et al. Self‐consistent domain theory in soft‐ferromagnetic media. II. Basic domain structures in thin‐film objects , 1986 .
[29] Robert V. Kohn,et al. Magnetic microstructures - a paradigm of multiscale problems , 1999 .
[30] Sylvia Serfaty,et al. Limiting domain wall energy for a problem related to micromagnetics , 2001 .