Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit. These lower bounds are proved to be optimal and are achieved by one-dimensional profiles, corresponding to Neel walls, if the jump is small enough (less than π/2 in angle), and by two-dimensional profiles, corresponding to cross-tie walls, if the jump is bigger. Thus, it provides an example of a vector-valued phase-transition type problem with an explicit non-one-dimensional energy-minimizing transition layer. We also establish other lower bounds and compactness properties on different quantities which provide a good notion of convergence and cost of vortices.

[1]  Yasutaro Uesaka,et al.  Direct Solution of the Landau-Lifshitz-Gilbert Equation for Micromagnetics , 1989 .

[2]  I. Fonseca,et al.  A Γ‐convergence result for the two‐gradient theory of phase transitions , 2002 .

[3]  L. Evans Measure theory and fine properties of functions , 1992 .

[4]  G. Carbou Regularity for critical points of a non local energy , 1997 .

[5]  Sisto Baldo,et al.  Asymptotic behavior of the Landau—Lifshitz model of ferromagnetism , 1991 .

[6]  Antonio DeSimone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[7]  P. Jabin,et al.  Compactness in Ginzburg‐Landau energy by kinetic averaging , 2001 .

[8]  D. Kinderlehrer,et al.  Some Regularity Results In Ferromagnetism , 1999 .

[9]  Benoît Perthame,et al.  Line-energy Ginzburg-Landau models: zero-energy states , 2002 .

[10]  David Kinderlehrer,et al.  Frustration in ferromagnetic materials , 1990 .

[11]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[12]  Yoshikazu Giga,et al.  On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg–Landau type energy for gradient fields , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  F. Otto,et al.  A compactness result in the gradient theory of phase transitions , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Robert V. Kohn,et al.  Singular Perturbation and the Energy of Folds , 2000, J. Nonlinear Sci..

[15]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[16]  Camillo De Lellis,et al.  Line energies for gradient vector fields in the plane , 1999 .

[17]  L. Ambrosio,et al.  A viscosity property of minimizing micromagnetic configurations , 2003 .

[18]  B. Dacorogna,et al.  Minima absolus pour des énergies ferromagnétiques , 2000 .

[19]  Regularity for micromagnetic configurations having zero jump energy , 2002 .

[20]  A. Hubert,et al.  Magnetic ground state of a thin-film element , 2000 .

[21]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[22]  Itai Shafrir,et al.  ON NEMATICS STABILIZED BY A LARGE EXTERNAL FIELD , 1999 .

[23]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[24]  Yoshikazu Giga,et al.  A mathematical problem related to the physical theory of liquid crystal configurations , 1987 .

[25]  F. Béthuel,et al.  Density of Smooth Functions between Two Manifolds in Sobolev Spaces , 1988 .

[26]  S. Serfaty,et al.  Compactness, Kinetic Formulation, and Entropies for a Problem Related to Micromagnetics , 2003 .

[27]  Augusto Visintin,et al.  On Landau-Lifshitz’ equations for ferromagnetism , 1985 .

[28]  H. A. M. van den Berg,et al.  Self‐consistent domain theory in soft‐ferromagnetic media. II. Basic domain structures in thin‐film objects , 1986 .

[29]  Robert V. Kohn,et al.  Magnetic microstructures - a paradigm of multiscale problems , 1999 .

[30]  Sylvia Serfaty,et al.  Limiting domain wall energy for a problem related to micromagnetics , 2001 .