Interaction of fungal laccases and laccase-mediator systems with lignin

[1]  S. Shleev,et al.  Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. , 2004, Biochimie.

[2]  S. Shleev,et al.  Direct electron transfer between ligninolytic redox enzymes and electrodes , 2004 .

[3]  D. Rochefort,et al.  Electron transfer mediator systems for bleaching of paper pulp , 2004 .

[4]  S. Shleev,et al.  Novel laccase redox mediators , 2003, Applied biochemistry and biotechnology.

[5]  S. Shleev,et al.  Laccase-catalyzed synthesis of conducting polyaniline , 2003 .

[6]  L. Gorton,et al.  CHARACTERIZATION OF GRAPHITE ELECTRODES MODIFIED WITH LACCASE FROM TRAMETES VERSICOLOR AND THEIR USE FOR BIOELECTROCHEMICAL MONITORING OF PHENOLIC COMPOUNDS IN FLOW INJECTION ANALYSIS , 2003 .

[7]  K. Piontek,et al.  Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers* , 2002, The Journal of Biological Chemistry.

[8]  D. Rochefort,et al.  Oxidation of lignin model compounds by organic and transition metal-based electron transfer mediators. , 2002, Chemical communications.

[9]  K. Shin,et al.  Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. , 2000, Archives of biochemistry and biophysics.

[10]  J. Kulys,et al.  Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds , 2000, Applied and Environmental Microbiology.

[11]  L. Gorton,et al.  Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors , 1999 .

[12]  H. Wariishi,et al.  Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Eriksson,et al.  Laccase-less mutants of the white-rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulp , 1998 .

[14]  C. Crestini,et al.  The early oxidative biodegradation steps of residual kraft lignin models with laccase. , 1998, Bioorganic & medicinal chemistry.

[15]  A. Makower,et al.  Purification and characterization of the constitutive form of laccase from the basidiomycete Coriolus hirsutus and effect of inducers on laccase synthesis , 1998, Biotechnology and applied biochemistry.

[16]  C. Thurston,et al.  Blue and yellow laccases of ligninolytic fungi. , 1997, FEMS microbiology letters.

[17]  P. Piacquadio,et al.  Phenols removal from apple juice by laccase immobilized on Cu 2+ -chelate regenerable carrier , 1997 .

[18]  U. Temp,et al.  Laccase is essential for lignin degradation by the white‐rot fungus Pycnoporus cinnabarinus , 1997, FEBS letters.

[19]  I. Reid,et al.  Kraft pulp bleaching and delignification by Trametes versicolor , 1997 .

[20]  H. Call,et al.  History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process) , 1997 .

[21]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[22]  L. Gorton,et al.  Electrochemical properties of some copper-containing oxidases , 1996 .

[23]  A. Yaropolov,et al.  Laccase: properties, catalytic mechanism, and applicability , 1994 .

[24]  L. Gianfreda,et al.  Effect of Soils on the Behavior of Immobilized Enzymes , 1994 .

[25]  R. Bourbonnais,et al.  Oxidation of non‐phenolic substrates , 1990, FEBS letters.

[26]  T. Umezawa,et al.  Aromatic ring cleavage of 4,6‐di(tert‐butyl)guaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor , 1988, FEBS letters.

[27]  T. Umezawa,et al.  Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor. , 1988, Archives of biochemistry and biophysics.

[28]  K. L. Shuttleworth,et al.  Soluble and immobilized laccase as catalysts for the transformation of substituted phenols , 1986 .

[29]  K. Lundquist,et al.  Exhaustive laccase-catalysed oxidation of a lignin model compound (vanillyl glycol) produces methanol and polymeric quinoid products. , 1985, The Biochemical journal.

[30]  Erich Adler,et al.  Lignin chemistry—past, present and future , 1977, Wood Science and Technology.

[31]  M. Rabinovich,et al.  Fungal Decomposition of Natural Aromatic Structures and Xenobiotics: A Review , 2004, Applied Biochemistry and Microbiology.

[32]  B. Långström,et al.  Cyclic Voltammetry and Electrocatalysis of the Blue Copper Oxidase Polyporus versicolor Laccase. , 1998 .

[33]  S. Yasuda,et al.  On the Behavior of Monolignol Glucosides in Lignin Biosynthesis. III. Synthesis of Variously Labeled Coniferin and Incorporation of the Label into Syringin in the Shoot of Magnolia kobus , 1996 .

[34]  S. A. Ralph,et al.  New Preparations of Lignin Polymer Models under Conditions that Approximate Cell Wall Lignification. I. Synthesis of Novel Lignin Polymer Models and their Structural Characterization by 13 C NMR , 1995 .

[35]  A. Karyakin,et al.  ISOLATION AND PROPERTIES OF LACCASE FROM THE BASIDIAL FUNGUS CORIOLUS-HIRSUTUS (FR) QUEL , 1988 .

[36]  L. Gorton,et al.  Enzymatic determination of glucose in a flow system by catalytic oxidation of the nicotinamide coenzyme at a modified electrode , 1985 .

[37]  A. Yaropolov,et al.  Oxidation of lignins and their components by oxygen in the presence of laccase from Polyporus versicolor . lignin detection by an enzyme electrode , 1984 .

[38]  A. Leonowicz,et al.  Oxidative and demethylating activity of multiple forms of laccase from Pholiota mutabilis. , 1979, Acta biochimica Polonica.

[39]  C. Swahn,et al.  Studies on the Enzymatic Degradation of Lignin. The Action of Peroxidase and Laccase on Monomeric and Dimeric Model Compounds. , 1973 .