Electrochemical-electrical-thermal modeling of a pouch-type lithium ion battery: An application to optimize temperature distribution

[1]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[2]  Monique Lallemand,et al.  Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics , 2003 .

[3]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[4]  Chee Burm Shin,et al.  A two-dimensional modeling of a lithium-polymer battery , 2006 .

[5]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[6]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[7]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[8]  Jaeshin Yi,et al.  Modelling the thermal behaviour of a lithium-ion battery during charge , 2011 .

[9]  Zhonghao Rao,et al.  A review of power battery thermal energy management , 2011 .

[10]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[11]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[12]  K. Smith,et al.  Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries , 2013 .

[13]  Ralph E. White,et al.  A Distributed Thermal Model for a Li-Ion Electrode Plate Pair , 2013 .

[14]  Song-Yul Choe,et al.  Reduced order model (ROM) of a pouch type lithium polymer battery based on electrochemical thermal principles for real time applications , 2013 .

[15]  Wei Zhao,et al.  Effect of tab design on large-format Li-ion cell performance , 2014 .

[16]  Yonghuang Ye,et al.  Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles , 2014 .

[17]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[18]  Junjie Gu,et al.  An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations , 2014 .

[19]  Hongguang Sun,et al.  Development of cooling strategy for an air cooled lithium-ion battery pack , 2014 .

[20]  N. Omar,et al.  Impact of Tab Location on Large Format Lithium-Ion Pouch Cell Based on Fully Coupled Tree-Dimensional Electrochemical-Thermal Modeling , 2014 .

[21]  N. Omar,et al.  Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells , 2014 .

[22]  Chan Ho Lee,et al.  A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation , 2015 .

[23]  Bin Wu,et al.  Thermal Design for the Pouch-Type Large-Format Lithium-Ion Batteries I. Thermo-Electrical Modeling and Origins of Temperature Non-Uniformity , 2015 .

[24]  Ai Lihua,et al.  Study on the thermal behaviors of power lithium iron phosphate (LFP) aluminum-laminated battery with different tab configurations , 2015 .

[25]  Jiuchun Jiang,et al.  Comparison of different cooling methods for lithium ion battery cells , 2016 .

[26]  Fan He,et al.  Thermal Management in Hybrid Power Systems Using Cylindrical and Prismatic Battery Cells , 2016 .