Colossal dielectric properties of Li- and Sm- based perovskite ceramics: A combination of first-principles calculations and experiments

[1]  N. Suresh Kumar,et al.  Structural, electrical, and magnetic properties of nano Sr1−XLaXFe12O19 (X = 0.2–0.8) , 2022, Scientific reports.

[2]  Jhasaketan Nayak,et al.  Improvement of humidity sensing performance and dielectric response through pH variation in CaCu3Ti4O12 ceramics , 2022, Sensors and Actuators A: Physical.

[3]  N. Chanlek,et al.  Dielectric Properties with High Dielectric Permittivity and Low Loss Tangent and Nonlinear Electrical Response of Sol-Gel Synthesized Na1/2Sm1/2Cu3Ti4O12 Perovskite Ceramic , 2022, Journal of the European Ceramic Society.

[4]  Zhijun Xu,et al.  Enhanced electrical and photoluminescence properties of BiSbO4-doped CaCu3Ti4O12 ceramics by modifying grain boundary response , 2022, Ceramics International.

[5]  X. Chao,et al.  Low dielectric loss, colossal permittivity, and high breakdown electric field in Al-doped Y2/3Cu3Ti4O12 ceramics , 2022, Ceramics International.

[6]  Yongjia Zhang,et al.  Strontium doped CaCu3Ti4O12 ceramics with very low dielectric loss synthesized by the sol–gel method , 2022, Applied Physics A.

[7]  W. Lu,et al.  Differences between La substitution and doping strategies in dielectric properties of CaCu3Ti4O12 ceramics with low loss , 2022, Journal of Materials Science: Materials in Electronics.

[8]  Supinya Nijpanich,et al.  High dielectric permittivity and dielectric relaxation behavior in a Y2/3Cu3Ti4O12 ceramic prepared by a modified Sol−Gel route , 2022, Ceramics International.

[9]  N. S. Kumar,et al.  Tetragonal structure and dielectric behaviour of rare-earth substituted La0.8Co0.16-xEu0.04GdxTiO3 (x = 0.04–0.16) nanorods , 2022, Materials Chemistry and Physics.

[10]  S. Ansari,et al.  Dielectric Properties of Colossal-Dielectric-Constant Na1/2La1/2Cu3Ti4O12 Ceramics Prepared by Spark Plasma Sintering , 2022, Molecules.

[11]  Dawei Wang,et al.  The enhanced cutoff frequency of dielectric constant for K-doped Na0.5Y0.5Cu3Ti4O12 ceramics , 2021, Materials Chemistry and Physics.

[12]  K. C. B. Naidu,et al.  Hexagonal microstructure, magnetic and dielectric properties of iron deficient BaNixZnxFe12−2xO19 (x = 0.0−0.5) hexaferrites , 2021, Applied Physics A.

[13]  X. Chao,et al.  High energy storage and colossal permittivity CdCu3Ti4O12 oxide ceramics , 2021, Ceramics International.

[14]  H. Khater,et al.  Sintering Temperature, Frequency, and Temperature Dependent Dielectric Properties of Na0.5Sm0.5Cu3Ti4O12 Ceramics , 2021, Materials.

[15]  J. Sedlacek,et al.  Synthesis and Pressure-Assisted Sintering of CaCu3Ti4O12 Dielectrics , 2021, Ceramics.

[16]  D. Sastry,et al.  Structural and electrical studies of excessively Sm2O3 substituted soft PZT nanoceramics , 2021, Ceramics International.

[17]  K. Srinivas,et al.  Structure, morphology, dielectric, and impedance properties of (1-x) (Al0.2La0.8TiO3) + (x) (CuTiO3) (x = 0.2–0.8) nanocomposites , 2021, Journal of Materials Science: Materials in Electronics.

[18]  S. Ramesh,et al.  Structural and Dielectric Properties of (1-x) (Al0.2La0.8TiO3) + (x) (BiZnFeO3) (x = 0.2 − 0.8) nanocomposites , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[19]  Shalendra Kumar,et al.  Transport and Dielectric Properties of Mechanosynthesized La2/3Cu3Ti4O12 Ceramics , 2021, Crystals.

[20]  T. A. Babu,et al.  Colossal dielectric behavior in Al0.8GdyLa0.2-yTiO3 (y = 0.01–0.04) nanostructures , 2021, Journal of Materials Science: Materials in Electronics.

[21]  J. Manyam,et al.  Origins of a liquid-phase sintering mechanism and giant dielectric properties of Ni+Ge co-doped CaCu3Ti4O12 ceramics , 2021 .

[22]  X. Chao,et al.  Colossal dielectric response in CdAl Cu3-Ti4O12 perovskite ceramics , 2021 .

[23]  Shengtao Li,et al.  Colossal permittivity due to electron trapping behaviors at the edge of double Schottky barrier , 2020, Journal of Physics D: Applied Physics.

[24]  N. Chanlek,et al.  Strongly Enhanced Dielectric Response and Structural Investigation of (Sr2+, Ge4+) Co-Doped CCTO Ceramics , 2020 .

[25]  X. Chao,et al.  A new perovskite-related ceramic with colossal permittivity and low dielectric loss , 2020 .

[26]  Chao Yang,et al.  Colossal dielectric permittivity in co-doping SrTiO3 ceramics by Nb and Mg , 2020 .

[27]  N. S. Kumar,et al.  Negative dielectric behavior in tetragonal La0.8Co0.2-xEuxTiO3 (x = 0.01–0.04) nanorods , 2020 .

[28]  H. Manjunatha,et al.  Structural transformation and high negative dielectric constant behavior in (1-x) (Al0·2La0·8TiO3) + (x) (BiFeO3) (x = 0.2–0.8) nanocomposites , 2020 .

[29]  S. Ramesh,et al.  Nanorods like microstructure, photocatalytic activity and ac-electrical properties of (1-x) (Al0.2La0.8TiO3) + (x) (BaTiO3) (x = 0.2, 0.4, 0.6 & 0.8) nanocomposites , 2020 .

[30]  K. Naidu,et al.  Iron deficient BaNi x Mn x Fe 12-2x O 19 (x = 0.0-0.5) hexagonal plates: single-domain magnetic structure and dielectric properties , 2020 .

[31]  S. Dong,et al.  Ultralow dielectric loss of BiScO3-PbTiO3 ceramics by Bi(Mn1/2Zr1/2)O3 modification , 2020 .

[32]  K. Naidu,et al.  Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0–0.8) , 2020 .

[33]  N. S. Kumar,et al.  Photocatalytic Activity, Negative AC‐Electrical Conductivity, Dielectric Modulus, and Impedance Properties in 0.6 (Al0.2La0.8TiO3) + 0.4 (BiFeO3) Nanocomposite , 2020, Crystal Research and Technology.

[34]  K. Srinivas,et al.  Phase transformation, nanorod-like morphology, wide bandgap, and dielectric properties of 1 − x (Al0.2La0.8TiO3) +  x (BaTiO3) (x = 0.2–0.8) nanocomposites , 2020, Journal of Materials Science: Materials in Electronics.

[35]  K. C. B. Naidu,et al.  Electrical and impedance spectroscopy properties of hydrothermally synthesized Ba0.2Sr0.8-yLayFe12O19 (y = 0.2–0.8) nanorods , 2020 .

[36]  X. Chao,et al.  Origin of colossal permittivity and low dielectric loss in Na1/3Cd1/3Y1/3Cu3Ti4O12 ceramics , 2020, Ceramics International.

[37]  M. Prakash,et al.  Optical and functional properties of hydrothermally synthesized tetragonal Ba0.4Cu0.6−xLaxTiO3 (x = 0.2–0.6) nanoparticles , 2020, Materials Research Express.

[38]  N. Chanlek,et al.  Giant dielectric behavior of monovalent cation/anion (Li + , F − ) co‐doped CaCu 3 Ti 4 O 12 ceramics , 2020 .

[39]  K. Naidu,et al.  Magnetic properties of hydrothermally synthesized Ba1–xSrxFe12O19 (x = 0.0–0.8) nanomaterials , 2019, Applied Physics A.

[40]  Anish Khan,et al.  Induced dielectric behavior in high dense AlxLa1-xTiO3 (x = 0.2–0.8) nanospheres , 2019, Journal of Materials Science: Materials in Electronics.

[41]  Jiping Wang,et al.  Improved dielectric and nonlinear properties of CaCu3Ti4O12 ceramics with Cu-rich phase at grain boundary layers , 2019, Ceramics International.

[42]  K. B. Babu Naidu,et al.  Microwave heated lead cobalt titanate nanoparticles synthesized by sol-gel technique: Structural, morphological, dielectric, impedance and ferroelectric properties , 2019, Materials Science and Engineering: B.

[43]  N. S. Kumar,et al.  Multiferroic Nature of Microwave‐Processed and Sol‐Gel Synthesized NanoPb1‐xCoxTiO3 (x = 0.2–0.8) Ceramics , 2018, Crystal Research and Technology.

[44]  M. Fu,et al.  Dielectric relaxation and relevant mechanism in giant dielectric constant Sm2/3Cu3Ti4O12 ceramics , 2018, Journal of Materials Science: Materials in Electronics.

[45]  K. Chandra Babu Naidu,et al.  Ceramic Nanoparticle Synthesis at Lower Temperatures for LTCC and MMIC Technologies , 2018, IEEE Transactions on Magnetics.

[46]  N. Suresh Kumar,et al.  Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system , 2018, Journal of the Australian Ceramic Society.

[47]  Hu Zhang,et al.  Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2 , 2018 .

[48]  N. S. Kumar,et al.  Structural and ferroelectric properties of microwave heated lead cobalt titanate nanoparticles synthesized by sol–gel technique , 2018 .

[49]  K. Chandra Babu Naidu,et al.  Barium titanate microspheres by low temperature hydrothermal method: studies on structural, morphological, and optical properties , 2018 .

[50]  Shengtao Li,et al.  Effects of dc bias on dielectric relaxations in CaCu3Ti4O12 ceramics , 2018, Journal of Materials Science: Materials in Electronics.

[51]  Shengtao Li,et al.  Space charge polarization modulated instability of low frequency permittivity in CaCu3Ti4O12 ceramics , 2017 .

[52]  Zupei Yang,et al.  Structure and Differentiated Electrical Characteristics of M1/2La1/2Cu3Ti4O12 (M = Li, Na, K) Ceramics Prepared by Sol–Gel Method , 2017, Journal of Electronic Materials.

[53]  Fei Xue,et al.  Large reduction of dielectric losses of CaCu3Ti4O12 ceramics via air quenching , 2017 .

[54]  P. Kidkhunthod,et al.  Significantly improved non-Ohmic and giant dielectric properties of CaCu3-xZnxTi4O12 ceramics by enhancing grain boundary response , 2017 .

[55]  K. Chandra Babu Naidu,et al.  Microwave Processed NiMgZn Ferrites for Electromagnetic Intereference Shielding Applications , 2017, IEEE Transactions on Magnetics.

[56]  K. C. B. Naidu,et al.  Effect of Nonmagnetic Zn2+ Cations on Initial Permeability of Microwave‐Treated NiMg Ferrites , 2016 .

[57]  Shengtao Li,et al.  Intrinsic and extrinsic relaxation of CaCu3Ti4O12 ceramics: Effect of sintering , 2010 .

[58]  S. De,et al.  Giant dielectric permittivity observed in Li and Zr co-doped NiO , 2010 .

[59]  X. Chen,et al.  Enhancement of Giant Dielectric Response in CaCu3Ti4O12 Ceramics by Zn Substitution , 2010 .

[60]  F. Morrison,et al.  CaCu3Ti4O12: One-step internal barrier layer capacitor , 2002 .