Diffusion Coefficients Estimation for Elliptic Partial Differential Equations

This paper considers the Dirichlet problem $ {\rm -div}(a\nabla u_a)=f \,\,\text{on}\,\ D,\, u_a=0\,\, \text{on}\,\,\partial D,$ for a Lipschitz domain $D\subset \mathbb{R}^d$, where $a$ is a scalar diffusion function. For a fixed $f$, we discuss under which conditions $a$ is uniquely determined and when $a$ can be stably recovered from the knowledge of $u_a$. A first result is that whenever $a\in H^1(D)$, with $0<\lambda \le a\le \Lambda$ on $D$, and $f\in L_\infty(D)$ is strictly positive, then $ \|a-b\|_{L_2(D)}\le C\|u_a-u_b\|_{H_0^1(D)}^{1/6}. $ More generally, it is shown that the assumption $a\in H^1(D)$ can be weakened to $a\in H^s(D)$, for certain $s<1$, at the expense of lowering the exponent $1/6$ to a value that depends on $s$.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Michael Grüter,et al.  The Green function for uniformly elliptic equations , 1982 .

[3]  P. Auscher,et al.  Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients , 2002 .

[4]  George F. Pinder,et al.  Galerkin solution of the inverse problem for aquifer transmissivity , 1973 .

[5]  NUMERIGAL ANAIYS,et al.  A variational method for parameter identification , 2009 .

[6]  Robert Acar,et al.  Identification of the coefficient in elliptic equations , 1993 .

[7]  I. Knowles Parameter identification for elliptic problems , 2001 .

[8]  Jürgen Sprekels,et al.  On the identification of coefficients of elliptic problems by asymptotic regularization , 1985 .

[9]  James H. Bramble A PROOF OF THE INF–SUP CONDITION FOR THE STOKES EQUATIONS ON LIPSCHITZ DOMAINS , 2003 .

[10]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[11]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[12]  Gerard R. Richter,et al.  Numerical identification of a spatially varying diffusion coefficient , 1981 .

[13]  Hongjie Dong,et al.  Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains , 2007, 0708.3270.

[14]  C. Kravaris,et al.  Identification of parameters in distributed parameter systems by regularization , 1983, The 22nd IEEE Conference on Decision and Control.

[15]  G. Alessandrini An identification problem for an elliptic equation in two variables , 1986 .

[16]  Ricardo H. Nochetto,et al.  Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2013, SIAM J. Numer. Anal..

[17]  Richard S. Falk,et al.  Error estimates for the numerical identification of a variable coefficient , 1983 .

[18]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[19]  Karl Kunisch,et al.  Inherent identifiability of parameters in elliptic differential equations , 1988 .

[20]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .