From First Stars to the Spite Plateau: A Possible Reconciliation of Halo Stars Observations with Predictions from Big Bang Nucleosynthesis
暂无分享,去创建一个
D. S. Balsara | L. Piau | T. Beers | T. Sivarani | J. Ferguson | D. Balsara | J. Truran | T. C. Beers | T. Sivarani | J. W. Truran | J. W. Ferguson | J. Ferguson | L. Piau | L. Piau | T. C. Beers | T. Sivarani
[1] D. Duncan,et al. The lithium abundance in halo stars , 1987 .
[2] V. Springel,et al. Is There a Missing Galaxy Problem at High Redshift? , 2003, astro-ph/0311294.
[3] T. Beers,et al. Lithium Processing in Halo Dwarfs, and T eff, [Fe/H] Correlations on the Spite Plateau , 1996 .
[4] J. Truran,et al. The Ionizing Efficiency of the First Stars , 2003, astro-ph/0304388.
[5] T. Beers,et al. The Frequency of Carbon-enhanced Metal-poor Stars in the Galaxy from the HERES Sample , 2006, astro-ph/0609730.
[6] Edward J. Wollack,et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.
[7] N. Prantzos. The energetics, evolution, and stellar depletion of 6Li in the early Galaxy , 2005, astro-ph/0510122.
[8] A. Boothroyd,et al. The Creation of Superrich Lithium Giants , 1992 .
[9] Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.
[10] Kathryn V. Johnston,et al. Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .
[11] David R. Alexander,et al. Low-Temperature Opacities , 2005, astro-ph/0502045.
[12] T. Beers,et al. The Hamburg / ESO R-process Enhanced Star survey ( HERES ) ⋆ I . Project description , and discovery of two stars with stro ng enhancements of neutron-capture elements , 2008 .
[13] COSMOLOGICAL COSMIC RAYS AND THE OBSERVED ^6Li PLATEAU IN METAL-POOR HALO STARS , 2004, astro-ph/0412426.
[14] Piercarlo Bonifacio,et al. The primordial lithium abundance , 1997 .
[15] T. Beers,et al. Mg abundances in metal-poor halo stars as a tracer of early Galactic mixing , 2005 .
[16] Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.
[17] B. Elmegreen. A Q Condition for Long-Range Propagating Star Formation , 1994 .
[18] V. Springel,et al. Lyman Break Galaxies at z = 4 - 6 in cosmological SPH Simulations , 2005, astro-ph/0503631.
[19] T. Beers,et al. First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements , 2004, astro-ph/0409536.
[20] Induced formation of primordial low-mass stars , 2003, astro-ph/0304074.
[21] Jacques Richer,et al. Implications of WMAP Observations on Li Abundance and Stellar Evolution Models , 2004 .
[22] A. Loeb,et al. The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.
[23] R. Larson,et al. The dispersal of iron through the interstellar medium , 1993 .
[24] J. Pety,et al. Statistical Properties of Line Centroid Velocities and Centroid Velocity Increments in Compressible Turbulence , 1996 .
[25] Reionization, chemical enrichment and seed black holes from the first stars: is Population III important? , 2003, astro-ph/0310331.
[26] F. Primas,et al. The lithium content of the Galactic Halo stars , 2005 .
[27] V. Hill,et al. First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.
[28] Lithium-6 : evolution from big bang to present , 1998, astro-ph/9811327.
[29] M. Giavalisco,et al. The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.
[30] T. Karlsson. Primordial Stellar Feedback and the Origin of Hyper-Metal-poor Stars , 2006, astro-ph/0602597.
[31] P. Morel. CESAM: A code for stellar evolution calculations , 1997 .
[32] Interstellar Deuterium, Nitrogen, and Oxygen Abundances toward GD 246, WD 2331–475, HZ 21, and Lanning 23: Results from the FUSE Mission* , 2002, astro-ph/0212506.
[33] Oxygen Overabundance in the Extremely Iron-Poor star CS 29498-043 , 2004, astro-ph/0402585.
[34] J. José,et al. On the Synthesis of 7Li and 7Be in Novae , 1996 .
[35] Nucleosynthesis, Reionization, and the Mass Function of the First Stars , 2004, astro-ph/0401376.
[36] AMPLIFICATION OF INTERSTELLAR MAGNETIC FIELDS AND TURBULENT MIXING BY SUPERNOVA-DRIVEN TURBULENCE. II. THE ROLE OF DYNAMICAL CHAOS , 2005, astro-ph/0504065.
[37] T. Beers,et al. Stellar Archaeology: A Keck Pilot Program on Extremely Metal-poor Stars from the Hamburg/ESO Survey. II. Abundance Analysis , 2002, astro-ph/0204083.
[38] The Oxygen Abundance of HE 1327-2326 , 2005, astro-ph/0512543.
[39] S. Woosley,et al. The nu-process , 1990 .
[40] Velocity field statistics in star-forming regions. I. Centroid velocity observations , 1998, astro-ph/9810427.
[41] Steven Tomczyk,et al. Helioseismic Constraints on the Structure of the Solar Tachocline , 1999 .
[42] C. Tremonti,et al. Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas , 2000, Nature.
[43] N. Christlieb,et al. A stellar relic from the early Milky Way , 2002, Nature.
[44] The Rise of the s-Process in the Galaxy , 2004, astro-ph/0410396.
[45] The Spite Lithium Plateau: Ultrathin but Postprimordial , 1999, astro-ph/9903059.
[46] Jian-rong Shi,et al. Abundances of Na, Mg and Al in nearby metal-poor stars , 2004 .
[47] R. Klessen,et al. Diffusion in supersonic turbulent compressible flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[48] J. Zahn,et al. Standard Solar Models in the Light of New Helioseismic Constraints. II. Mixing below the Convective Zone , 1999, astro-ph/9906382.
[49] A. Boothroyd,et al. Creation of 7Li and Destruction of 3He, 9Be, 10B, and 11B in Low-Mass Red Giants, Due to Deep Circulation , 1999 .
[50] Takeo Minezaki,et al. Nucleosynthetic signatures of the first stars , 2005, Nature.
[51] V. Springel,et al. Lyman break galaxies at z= 4–6 in cosmological smoothed particle hydrodynamics simulations , 2006 .
[52] A. Cimatti,et al. Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.
[53] S. Woosley,et al. The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .
[54] Detecting the transition from Pop III to Pop II stars , 2005, astro-ph/0508182.
[55] A. Cameron,et al. The evolution of hydrogen-helium stars , 1971 .
[56] The Deuterium to Hydrogen Abundance Ratio toward a Fourth QSO: HS 0105+1619 , 2000, astro-ph/0011179.
[57] S. Veilleux,et al. Dynamical Properties of Ultraluminous Infrared Galaxies. I. Mass Ratio Conditions for ULIRG Activity in Interacting Pairs , 2005, astro-ph/0510670.
[58] T. Beers,et al. THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .
[59] V. Narayanan,et al. Stellar Mixing and the Primordial Lithium Abundance , 2001, astro-ph/0105439.
[60] P. Ventura,et al. Yields from low metallicity, intermediate mass AGB stars:. Their role for the CNO and lithium abundances in Globular Cluster stars , 2002 .
[61] C. Chiappini,et al. Deuterium astration in the local disc and beyond , 2006, astro-ph/0603190.
[62] V. Hill,et al. First Stars II. Elemental abundances in the extremely metal-poor star CS 22949-037 ? A diagnostic of early massive supernovae , 2002, astro-ph/0205232.
[63] The origin of nitrogen - Implications of recent measurements of N/O in Galactic metal-poor halo stars , 2005, astro-ph/0503492.
[64] K. Olive,et al. A Realistic Determination of the Error on the Primordial Helium Abundance: Steps toward Nonparametric Nebular Helium Abundances , 2004, astro-ph/0405588.
[65] Sofia Randich,et al. Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .
[66] G. Wasserburg,et al. Did Very Massive Stars Preenrich and Reionize the Universe? , 2001, astro-ph/0109400.
[67] Updated Big Bang nucleosynthesis confronted to WMAP observations and to the abundance of light elements , 2003, astro-ph/0309480.
[68] The number and metallicities of the most metal-poor stars , 2002, astro-ph/0211344.
[69] The early star generations: the dominant effect of rotation on the cno yields , 2005, astro-ph/0510560.
[70] F. Hoyle,et al. Galactic Cosmic Ray Origin of Li, Be and B in Stars , 1970, Nature.
[71] N. Christlieb,et al. HE 0107-5240, A CHEMICALLY ANCIENT STAR. I. A DETAILED ABUNDANCE ANALYSIS , 2004 .
[72] S. Randich,et al. Late main-sequence evolution of lithium and beryllium , 2003 .
[73] D. Balsara,et al. The Distribution of Pressures in a Supernova-Driven Interstellar Medium , 2001, astro-ph/0106509.
[74] F.-J. Zickgraf,et al. The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.
[75] J. Truran,et al. Probing the Neutron‐Capture Nucleosynthesis History of Galactic Matter , 2002, astro-ph/0209308.
[76] T. Beers,et al. He 1327-2326, an unevolved star with [Fe/H] < -5.0. I. A comprehensive abundance analysis , 2005, astro-ph/0509206.
[77] S. Kawaler. Angular momentum loss in low-mass stars , 1988 .
[78] Primordial Lithium and Big Bang Nucleosynthesis. , 1999, The Astrophysical journal.
[79] Michel Casse,et al. Origin and evolution of the elements , 1993 .
[80] B. Fields,et al. The Revival of Galactic Cosmic-Ray Nucleosynthesis? , 1998, astro-ph/9809277.
[81] D. Balsara,et al. Amplification of Interstellar Magnetic Fields by Supernova-driven Turbulence , 2004 .
[82] Francesca Primas,et al. Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 LITHIUM ISOTOPIC ABUNDANCES IN METAL-POOR HALO , 2005 .
[83] B. Nath,et al. The Radiative Transport of Dust in Primordial Galaxies and Second-Generation Star Formation , 2005, astro-ph/0508163.
[84] R. G. Gratton,et al. The lithium content of the globular cluster NGC 6397 , 2002 .
[85] T. Beers,et al. Rapid Rotation of Ultra-Li-depleted Halo Stars and Their Association with Blue Stragglers , 2002, astro-ph/0202369.
[86] A. Shukurov,et al. A Supernova-regulated Interstellar Medium: Simulations of the Turbulent Multiphase Medium , 1999 .
[87] M. A. D. A. D. Breitschwerdt. Volume filling factors of the ISM phases in star forming galaxies. I. The role of the disk-halo interaction , 2004, astro-ph/0407034.
[88] J. Thorburn. The Primordial lithium abundance from extreme subdwarfs: New observations , 1993 .
[89] Chemical Composition of the Carbon-rich, Extremely Metal Poor Star CS 29498–043: A New Class of Extremely Metal Poor Stars with Excesses of Magnesium and Silicon* , 2002, astro-ph/0208019.
[90] Stefano Casertano,et al. Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005 .
[91] S. Burles. Deuterium and big-bang nucleosynthesis: implications for the baryon density , 2002 .
[92] M. Cassé,et al. Galactic Cosmic Rays and the Evolution of Light Elements , 1998 .
[93] D. York,et al. Deuterium abundances , 1999, astro-ph/9903043.
[94] New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.
[95] C. Chiappini,et al. A strong case for fast stellar rotation at very low metallicities , 2006 .
[96] J. Norris,et al. EXTREMELY METAL-POOR STARS. VIII. HIGH-RESOLUTION, HIGH SIGNAL-TO-NOISE RATIO ANALYSIS OF FIVE STARS WITH (Fe/H) ( (3.5 , 2001, astro-ph/0107304.
[97] S. Inoue,et al. Cosmic-Ray Production of 6Li by Structure Formation Shocks in the Early Milky Way: A Fossil Record of Dissipative Processes during Galaxy Formation , 2002, astro-ph/0201190.
[98] Implications of a new temperature scale for halo dwarfs on LiBeB and chemical evolution , 2004, astro-ph/0411728.
[99] S. E. Woosley,et al. The Nucleosynthetic Signature of Population III , 2002 .
[100] Solar neutrino constraints on the BBN production of Li , 2003, astro-ph/0312629.
[101] F. Motte,et al. The initial conditions of isolated star formation — III. Millimetre continuum mapping of pre-stellar cores , 1999 .