From First Stars to the Spite Plateau: A Possible Reconciliation of Halo Stars Observations with Predictions from Big Bang Nucleosynthesis

Since the pioneering observations of Spite & Spite in 1982, the constant lithium abundance of metal-poor ([Fe/H] < -1.3) halo stars near the turnoff has been attributed to a cosmological origin. Closer analysis, however, revealed that the observed abundance lies at Δ7Li ~ 0.4 dex below the predictions of big bang nucleosynthesis (BBN). The measurements of deuterium abundances along the lines of sight toward quasars, and the recent data from the Wilkinson Microwave Anisotropy Probe (WMAP), have independently confirmed this gap. We suggest here that part of the discrepancy (from 0.2 to 0.3 dex) is explained by a first generation of stars that efficiently depleted lithium. Assuming that the models for lithium evolution in halo turnoff stars, as well as the Δ7Li, estimates are correct, we infer that between one-third and one-half of the baryonic matter of the early halo (i.e., ~109 M☉) was processed through Population III stars. This new paradigm proposes a very economical solution to the lingering difficulty of understanding the properties of the Spite plateau and its lack of star-to-star scatter down to [Fe/H] = -2.5. It is moreover in agreement both with the absence of lithium in the most iron-poor turnoff star currently known (HE 1327-2326) and also with new trends of the plateau suggesting its low-metallicity edge may be reached around [Fe/H] = -2.5. We discuss the role of turbulent mixing associated with enhanced supernovae explosions in the early interstellar medium in this picture. We suggest how it may explain the small scatter and also other recent observational features of the lithium plateau. Finally, we show that other chemical properties of the extremely metal-poor stars (such as carbon enrichment) are also in agreement with significant Population III processing in the halo, provided these models include mass loss and rotationally induced mixing.

[1]  D. Duncan,et al.  The lithium abundance in halo stars , 1987 .

[2]  V. Springel,et al.  Is There a Missing Galaxy Problem at High Redshift? , 2003, astro-ph/0311294.

[3]  T. Beers,et al.  Lithium Processing in Halo Dwarfs, and T eff, [Fe/H] Correlations on the Spite Plateau , 1996 .

[4]  J. Truran,et al.  The Ionizing Efficiency of the First Stars , 2003, astro-ph/0304388.

[5]  T. Beers,et al.  The Frequency of Carbon-enhanced Metal-poor Stars in the Galaxy from the HERES Sample , 2006, astro-ph/0609730.

[6]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[7]  N. Prantzos The energetics, evolution, and stellar depletion of 6Li in the early Galaxy , 2005, astro-ph/0510122.

[8]  A. Boothroyd,et al.  The Creation of Superrich Lithium Giants , 1992 .

[9]  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[10]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[11]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[12]  T. Beers,et al.  The Hamburg / ESO R-process Enhanced Star survey ( HERES ) ⋆ I . Project description , and discovery of two stars with stro ng enhancements of neutron-capture elements , 2008 .

[13]  COSMOLOGICAL COSMIC RAYS AND THE OBSERVED ^6Li PLATEAU IN METAL-POOR HALO STARS , 2004, astro-ph/0412426.

[14]  Piercarlo Bonifacio,et al.  The primordial lithium abundance , 1997 .

[15]  T. Beers,et al.  Mg abundances in metal-poor halo stars as a tracer of early Galactic mixing , 2005 .

[16]  Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.

[17]  B. Elmegreen A Q Condition for Long-Range Propagating Star Formation , 1994 .

[18]  V. Springel,et al.  Lyman Break Galaxies at z = 4 - 6 in cosmological SPH Simulations , 2005, astro-ph/0503631.

[19]  T. Beers,et al.  First stars VI - Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements , 2004, astro-ph/0409536.

[20]  Induced formation of primordial low-mass stars , 2003, astro-ph/0304074.

[21]  Jacques Richer,et al.  Implications of WMAP Observations on Li Abundance and Stellar Evolution Models , 2004 .

[22]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[23]  R. Larson,et al.  The dispersal of iron through the interstellar medium , 1993 .

[24]  J. Pety,et al.  Statistical Properties of Line Centroid Velocities and Centroid Velocity Increments in Compressible Turbulence , 1996 .

[25]  Reionization, chemical enrichment and seed black holes from the first stars: is Population III important? , 2003, astro-ph/0310331.

[26]  F. Primas,et al.  The lithium content of the Galactic Halo stars , 2005 .

[27]  V. Hill,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[28]  Lithium-6 : evolution from big bang to present , 1998, astro-ph/9811327.

[29]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[30]  T. Karlsson Primordial Stellar Feedback and the Origin of Hyper-Metal-poor Stars , 2006, astro-ph/0602597.

[31]  P. Morel CESAM: A code for stellar evolution calculations , 1997 .

[32]  Interstellar Deuterium, Nitrogen, and Oxygen Abundances toward GD 246, WD 2331–475, HZ 21, and Lanning 23: Results from the FUSE Mission* , 2002, astro-ph/0212506.

[33]  Oxygen Overabundance in the Extremely Iron-Poor star CS 29498-043 , 2004, astro-ph/0402585.

[34]  J. José,et al.  On the Synthesis of 7Li and 7Be in Novae , 1996 .

[35]  Nucleosynthesis, Reionization, and the Mass Function of the First Stars , 2004, astro-ph/0401376.

[36]  AMPLIFICATION OF INTERSTELLAR MAGNETIC FIELDS AND TURBULENT MIXING BY SUPERNOVA-DRIVEN TURBULENCE. II. THE ROLE OF DYNAMICAL CHAOS , 2005, astro-ph/0504065.

[37]  T. Beers,et al.  Stellar Archaeology: A Keck Pilot Program on Extremely Metal-poor Stars from the Hamburg/ESO Survey. II. Abundance Analysis , 2002, astro-ph/0204083.

[38]  The Oxygen Abundance of HE 1327-2326 , 2005, astro-ph/0512543.

[39]  S. Woosley,et al.  The nu-process , 1990 .

[40]  Velocity field statistics in star-forming regions. I. Centroid velocity observations , 1998, astro-ph/9810427.

[41]  Steven Tomczyk,et al.  Helioseismic Constraints on the Structure of the Solar Tachocline , 1999 .

[42]  C. Tremonti,et al.  Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas , 2000, Nature.

[43]  N. Christlieb,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[44]  The Rise of the s-Process in the Galaxy , 2004, astro-ph/0410396.

[45]  The Spite Lithium Plateau: Ultrathin but Postprimordial , 1999, astro-ph/9903059.

[46]  Jian-rong Shi,et al.  Abundances of Na, Mg and Al in nearby metal-poor stars , 2004 .

[47]  R. Klessen,et al.  Diffusion in supersonic turbulent compressible flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  J. Zahn,et al.  Standard Solar Models in the Light of New Helioseismic Constraints. II. Mixing below the Convective Zone , 1999, astro-ph/9906382.

[49]  A. Boothroyd,et al.  Creation of 7Li and Destruction of 3He, 9Be, 10B, and 11B in Low-Mass Red Giants, Due to Deep Circulation , 1999 .

[50]  Takeo Minezaki,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[51]  V. Springel,et al.  Lyman break galaxies at z= 4–6 in cosmological smoothed particle hydrodynamics simulations , 2006 .

[52]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[53]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[54]  Detecting the transition from Pop III to Pop II stars , 2005, astro-ph/0508182.

[55]  A. Cameron,et al.  The evolution of hydrogen-helium stars , 1971 .

[56]  The Deuterium to Hydrogen Abundance Ratio toward a Fourth QSO: HS 0105+1619 , 2000, astro-ph/0011179.

[57]  S. Veilleux,et al.  Dynamical Properties of Ultraluminous Infrared Galaxies. I. Mass Ratio Conditions for ULIRG Activity in Interacting Pairs , 2005, astro-ph/0510670.

[58]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[59]  V. Narayanan,et al.  Stellar Mixing and the Primordial Lithium Abundance , 2001, astro-ph/0105439.

[60]  P. Ventura,et al.  Yields from low metallicity, intermediate mass AGB stars:. Their role for the CNO and lithium abundances in Globular Cluster stars , 2002 .

[61]  C. Chiappini,et al.  Deuterium astration in the local disc and beyond , 2006, astro-ph/0603190.

[62]  V. Hill,et al.  First Stars II. Elemental abundances in the extremely metal-poor star CS 22949-037 ? A diagnostic of early massive supernovae , 2002, astro-ph/0205232.

[63]  The origin of nitrogen - Implications of recent measurements of N/O in Galactic metal-poor halo stars , 2005, astro-ph/0503492.

[64]  K. Olive,et al.  A Realistic Determination of the Error on the Primordial Helium Abundance: Steps toward Nonparametric Nebular Helium Abundances , 2004, astro-ph/0405588.

[65]  Sofia Randich,et al.  Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .

[66]  G. Wasserburg,et al.  Did Very Massive Stars Preenrich and Reionize the Universe? , 2001, astro-ph/0109400.

[67]  Updated Big Bang nucleosynthesis confronted to WMAP observations and to the abundance of light elements , 2003, astro-ph/0309480.

[68]  The number and metallicities of the most metal-poor stars , 2002, astro-ph/0211344.

[69]  The early star generations: the dominant effect of rotation on the cno yields , 2005, astro-ph/0510560.

[70]  F. Hoyle,et al.  Galactic Cosmic Ray Origin of Li, Be and B in Stars , 1970, Nature.

[71]  N. Christlieb,et al.  HE 0107-5240, A CHEMICALLY ANCIENT STAR. I. A DETAILED ABUNDANCE ANALYSIS , 2004 .

[72]  S. Randich,et al.  Late main-sequence evolution of lithium and beryllium , 2003 .

[73]  D. Balsara,et al.  The Distribution of Pressures in a Supernova-Driven Interstellar Medium , 2001, astro-ph/0106509.

[74]  F.-J. Zickgraf,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.

[75]  J. Truran,et al.  Probing the Neutron‐Capture Nucleosynthesis History of Galactic Matter , 2002, astro-ph/0209308.

[76]  T. Beers,et al.  He 1327-2326, an unevolved star with [Fe/H] < -5.0. I. A comprehensive abundance analysis , 2005, astro-ph/0509206.

[77]  S. Kawaler Angular momentum loss in low-mass stars , 1988 .

[78]  Primordial Lithium and Big Bang Nucleosynthesis. , 1999, The Astrophysical journal.

[79]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[80]  B. Fields,et al.  The Revival of Galactic Cosmic-Ray Nucleosynthesis? , 1998, astro-ph/9809277.

[81]  D. Balsara,et al.  Amplification of Interstellar Magnetic Fields by Supernova-driven Turbulence , 2004 .

[82]  Francesca Primas,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 LITHIUM ISOTOPIC ABUNDANCES IN METAL-POOR HALO , 2005 .

[83]  B. Nath,et al.  The Radiative Transport of Dust in Primordial Galaxies and Second-Generation Star Formation , 2005, astro-ph/0508163.

[84]  R. G. Gratton,et al.  The lithium content of the globular cluster NGC 6397 , 2002 .

[85]  T. Beers,et al.  Rapid Rotation of Ultra-Li-depleted Halo Stars and Their Association with Blue Stragglers , 2002, astro-ph/0202369.

[86]  A. Shukurov,et al.  A Supernova-regulated Interstellar Medium: Simulations of the Turbulent Multiphase Medium , 1999 .

[87]  M. A. D. A. D. Breitschwerdt Volume filling factors of the ISM phases in star forming galaxies. I. The role of the disk-halo interaction , 2004, astro-ph/0407034.

[88]  J. Thorburn The Primordial lithium abundance from extreme subdwarfs: New observations , 1993 .

[89]  Chemical Composition of the Carbon-rich, Extremely Metal Poor Star CS 29498–043: A New Class of Extremely Metal Poor Stars with Excesses of Magnesium and Silicon* , 2002, astro-ph/0208019.

[90]  Stefano Casertano,et al.  Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005 .

[91]  S. Burles Deuterium and big-bang nucleosynthesis: implications for the baryon density , 2002 .

[92]  M. Cassé,et al.  Galactic Cosmic Rays and the Evolution of Light Elements , 1998 .

[93]  D. York,et al.  Deuterium abundances , 1999, astro-ph/9903043.

[94]  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[95]  C. Chiappini,et al.  A strong case for fast stellar rotation at very low metallicities , 2006 .

[96]  J. Norris,et al.  EXTREMELY METAL-POOR STARS. VIII. HIGH-RESOLUTION, HIGH SIGNAL-TO-NOISE RATIO ANALYSIS OF FIVE STARS WITH (Fe/H) ( (3.5 , 2001, astro-ph/0107304.

[97]  S. Inoue,et al.  Cosmic-Ray Production of 6Li by Structure Formation Shocks in the Early Milky Way: A Fossil Record of Dissipative Processes during Galaxy Formation , 2002, astro-ph/0201190.

[98]  Implications of a new temperature scale for halo dwarfs on LiBeB and chemical evolution , 2004, astro-ph/0411728.

[99]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[100]  Solar neutrino constraints on the BBN production of Li , 2003, astro-ph/0312629.

[101]  F. Motte,et al.  The initial conditions of isolated star formation — III. Millimetre continuum mapping of pre-stellar cores , 1999 .