Asymptotics for hazard regression

In hazard regression (HARE), the logarithm of the conditional haz­ ard function of a survival time given a covariate is modeled by a sum of polynomial splines and their tensor products. Under appropriate conditions, it has been shown that the (nonadaptive) HARE estimate of the conditional log-hazard function possesses an optimal L 2 rate of convergence. The current paper considers the L oo rates of convergence and the distributional properties of HARE estimates of the conditional hazard, cumulative hazard, survival and density functions. In partic­ ular, it will be shown that these estimates are asymptotically normal.

[1]  Charles Kooperberg,et al.  Trees and splines in survival analysis , 1995, Statistical methods in medical research.

[2]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[3]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[4]  C. J. Stone,et al.  Asymptotics for Doubly Flexible Logspline Response Models , 1991 .

[5]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[6]  C. J. Stone,et al.  Large-Sample Inference for Log-Spline Models , 1990 .

[7]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[8]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[9]  Carl de Boor,et al.  A bound on the _{∞}-norm of ₂-approximation by splines in terms of a global mesh ratio , 1976 .

[10]  N. Breslow,et al.  A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship , 1974 .

[11]  Young K. Truong,et al.  The L2 rate of convergence for hazard regression , 1995 .

[12]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[13]  C. J. Stone Uniform Error Bounds Involving Logspline Models , 1989 .

[14]  C. J. Stone,et al.  OPTIMAL UNIFORM RATE OF CONVERGENCE FOR NONPARAMETRIC ESTIMATORS OF A DENSITY FUNCTION OR ITS DERIVATIVES , 1983 .

[15]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[16]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[17]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[18]  C. J. Stone,et al.  Hazard Regression , 2022 .