A fully implicit finite element method for bidomain models of cardiac electromechanics.

We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes.

[1]  J. Wong,et al.  Generating fibre orientation maps in human heart models using Poisson interpolation , 2014, Computer methods in biomechanics and biomedical engineering.

[2]  G Plank,et al.  Computational tools for modeling electrical activity in cardiac tissue. , 2003, Journal of electrocardiology.

[3]  S. Göktepe,et al.  Computational modeling of electrocardiograms: A finite element approach toward cardiac excitation , 2010 .

[4]  Robert L. Taylor,et al.  FEAP - - A Finite Element Analysis Program , 2011 .

[5]  A.J.M. Spencer,et al.  Theory of invariants , 1971 .

[6]  Luca F. Pavarino,et al.  A Scalable Newton--Krylov--Schwarz Method for the Bidomain Reaction-Diffusion System , 2009, SIAM J. Sci. Comput..

[7]  Daniel B Ennis,et al.  Myofiber angle distributions in the ovine left ventricle do not conform to computationally optimized predictions. , 2008, Journal of biomechanics.

[8]  Daniel B Ennis,et al.  Active stiffening of mitral valve leaflets in the beating heart. , 2009, American journal of physiology. Heart and circulatory physiology.

[9]  Mark Potse,et al.  A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart , 2006, IEEE Transactions on Biomedical Engineering.

[10]  P. Hunter,et al.  Computational mechanics of the heart : From tissue structure to ventricular function , 2000 .

[11]  Ellen Kuhl,et al.  Active contraction of cardiac muscle: in vivo characterization of mechanical activation sequences in the beating heart. , 2011, Journal of the mechanical behavior of biomedical materials.

[12]  Mark Potse,et al.  The effect of reduced intercellular coupling on electrocardiographic signs of left ventricular hypertrophy. , 2011, Journal of electrocardiology.

[13]  C. Miehe,et al.  Aspects of the formulation and finite element implementation of large strain isotropic elasticity , 1994 .

[14]  Natalia A. Trayanova,et al.  Computational techniques for solving the bidomain equations in three dimensions , 2002, IEEE Transactions on Biomedical Engineering.

[15]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[16]  Xiaoliang Wan,et al.  Comput. Methods Appl. Mech. Engrg. , 2010 .

[17]  S. Göktepe,et al.  Computational modeling of passive myocardium , 2011 .

[18]  Peter J Hunter,et al.  Modeling total heart function. , 2003, Annual review of biomedical engineering.

[19]  J. Keener,et al.  A numerical method for the solution of the bidomain equations in cardiac tissue. , 1998, Chaos.

[20]  Simone Scacchi,et al.  A hybrid multilevel Schwarz method for the bidomain model , 2008 .

[21]  S. Göktepe,et al.  Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue , 2010 .

[22]  V. Simoncini,et al.  Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process , 2002 .

[23]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[24]  G Plank,et al.  Solvers for the cardiac bidomain equations. , 2008, Progress in biophysics and molecular biology.

[25]  B. Taccardi,et al.  A reliability analysis of cardiac repolarization time markers. , 2009, Mathematical biosciences.

[26]  A. Tveito,et al.  An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. , 2005, Mathematical biosciences.

[27]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[28]  A. McCulloch,et al.  Modelling cardiac mechanical properties in three dimensions , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Riccardo Sacco,et al.  A Conservative and Monotone Mixed-Hybridized Finite Element Approximation of Transport Problems in Heterogeneous Domains , 2010 .

[30]  Jonathan Wong,et al.  Characterisation of electrophysiological conduction in cardiomyocyte co-cultures using co-occurrence analysis , 2013, Computer methods in biomechanics and biomedical engineering.

[31]  Rodrigo Weber dos Santos,et al.  Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model , 2007, IEEE Transactions on Biomedical Engineering.

[32]  T K Borg,et al.  The collagen matrix of the heart. , 1981, Federation proceedings.

[33]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[34]  Luca Gerardo-Giorda,et al.  A model-based block-triangular preconditioner for the Bidomain system in electrocardiology , 2009, J. Comput. Phys..

[35]  A D McCulloch,et al.  Mechanics of active contraction in cardiac muscle: Part I--Constitutive relations for fiber stress that describe deactivation. , 1993, Journal of biomechanical engineering.

[36]  Serdar Göktepe,et al.  Rigid, Complete Annuloplasty Rings Increase Anterior Mitral Leaflet Strains in the Normal Beating Ovine Heart , 2010, Circulation.

[37]  Damien Rohmer,et al.  Reconstruction and Visualization of Fiber and Laminar Structure in the Normal Human Heart from Ex Vivo Diffusion Tensor Magnetic Resonance Imaging (DTMRI) Data , 2007, Investigative radiology.

[38]  S. Göktepe,et al.  Computational modeling of cardiac electrophysiology: A novel finite element approach , 2009 .

[39]  D. Chapelle,et al.  MODELING AND ESTIMATION OF THE CARDIAC ELECTROMECHANICAL ACTIVITY , 2006 .

[40]  V. Simoncini,et al.  Algebraic multigrid preconditioners for the bidomain reaction--diffusion system , 2009 .

[41]  Daniel B Ennis,et al.  Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. , 2008, American journal of physiology. Heart and circulatory physiology.

[42]  David Gavaghan,et al.  Generation of histo-anatomically representative models of the individual heart: tools and application , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Simone Scacchi,et al.  A multilevel hybrid Newton–Krylov–Schwarz method for the Bidomain model of electrocardiology , 2011 .

[44]  K Skouibine,et al.  A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. , 2000, Mathematical biosciences.

[45]  Roy C. P. Kerckhoffs,et al.  Computational Methods for Cardiac Electromechanics , 2006, Proceedings of the IEEE.

[46]  Rodrigo Weber dos Santos,et al.  Parallel multigrid preconditioner for the cardiac bidomain model , 2004, IEEE Transactions on Biomedical Engineering.

[47]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  S. Göktepe,et al.  Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem , 2010 .

[49]  P. Hunter,et al.  Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. , 1999, Progress in biophysics and molecular biology.

[50]  Serdar Göktepe,et al.  A fully implicit finite element method for bidomain models of cardiac electrophysiology , 2012, Computer methods in biomechanics and biomedical engineering.

[51]  Peter J. Hunter,et al.  Multiscale modeling: physiome project standards, tools, and databases , 2006, Computer.

[52]  R. Aliev,et al.  A simple two-variable model of cardiac excitation , 1996 .

[53]  Serdar Göktepe,et al.  A three-field, bi-domain based approach to the strongly coupled electromechanics of the heart , 2011 .

[54]  P. Flory,et al.  Thermodynamic relations for high elastic materials , 1961 .

[55]  Alessandro Veneziani,et al.  An a posteriori error estimator for model adaptivity in electrocardiology , 2011 .

[56]  D. Geselowitz,et al.  Simulation Studies of the Electrocardiogram: I. The Normal Heart , 1978, Circulation research.

[57]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[58]  Peter J. Hunter,et al.  Computational multiscale modeling in the IUPS Physiome Project: Modeling cardiac electromechanics , 2006, IBM J. Res. Dev..

[59]  Hervé Delingette,et al.  Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging , 2005, Medical Image Anal..

[60]  Karl Deisseroth,et al.  Multiscale computational models for optogenetic control of cardiac function. , 2011, Biophysical journal.

[61]  Gernot Plank,et al.  Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems , 2009, IEEE Transactions on Biomedical Engineering.

[62]  A. McCulloch,et al.  Computational model of three-dimensional cardiac electromechanics , 2002 .

[63]  P. C. Franzone,et al.  A PARALLEL SOLVER FOR REACTION-DIFFUSION SYSTEMS IN COMPUTATIONAL ELECTROCARDIOLOGY , 2004 .

[64]  S. Göktepe,et al.  Computational modeling of electrochemical coupling: A novel finite element approach towards ionic models for cardiac electrophysiology , 2011 .

[65]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[66]  P. Hunter,et al.  Computational Mechanics of the Heart , 2000 .

[67]  M. Nash,et al.  Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. , 2004, Progress in biophysics and molecular biology.