Prostate MRI: diffusion-weighted imaging at 1.5T correlates better with prostatectomy Gleason grades than TRUS-guided biopsies in peripheral zone tumours

AbstractObjectivesTo investigate the usefulness of Apparent Diffusion Coefficients (ADC) in predicting prostatectomy Gleason Grades (pGG) and Scores (GS), compared with ultrasound-guided biopsy Gleason Grades (bGG).MethodsTwenty-four patients with biopsy-proven prostate cancer were included in the study. Diffusion-weighted images were obtained using 1.5-T MR with a pelvic phased-array coil. Median ADC values (b0,500,1000 s/mm²) were measured at the most suspicious areas in the peripheral zone. The relationship between ADC values and pGG or GS was assessed using Pearson’s coefficient. The relationship between bGG and pGG or GS was also evaluated. Receiver operating characteristic (ROC) curve analysis was performed to assess the performance of each method on a qualitative level.ResultsA significant negative correlation was found between mean ADCs of suspicious lesions and their pGG (r = −0.55; p < 0.01) and GS (r = −0.63; p < 0.01). No significant correlation was found between bGG and pGG (r = 0.042; p > 0.05) or GS (r = 0.048; p > 0.05). ROC analysis revealed a discriminatory performance of AUC = 0.82 for ADC and AUC = 0.46 for bGG in discerning low-grade from intermediate/high-grade lesions.ConclusionsThe ADC values of suspicious areas in the peripheral zone perform better than bGG in the correlation with prostate cancer aggressiveness, although with considerable intra-subject heterogeneity.Key Points• Prostate cancer aggressiveness is probably underestimated and undersampled by routine ultrasound-guided biopsies. • Diffusion-weighted MR images show good linear correlation with prostate cancer aggressiveness.• DWI information may be used to improve risk-assessment in prostate cancer.

[1]  N M deSouza,et al.  Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. , 2008, Clinical radiology.

[2]  L. Egevad,et al.  The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma , 2005, The American journal of surgical pathology.

[3]  J A Smith,et al.  Transrectal ultrasound versus digital rectal examination for the staging of carcinoma of the prostate: results of a prospective, multi-institutional trial. , 1997, The Journal of urology.

[4]  Hans Garmo,et al.  Radical prostatectomy versus watchful waiting in early prostate cancer. , 2005, The New England journal of medicine.

[5]  A. D'Amico,et al.  Cancer-specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigen era. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  J. Machan,et al.  Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. , 2010, AJR. American journal of roentgenology.

[7]  Ning-Yu An,et al.  Differentiation of clinically benign and malignant breast lesions using diffusion‐weighted imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[8]  Seymour Rosen,et al.  Extended prostate needle biopsy improves concordance of Gleason grading between prostate needle biopsy and radical prostatectomy. , 2003, The Journal of urology.

[9]  L. Holmberg,et al.  The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. , 1997, Urology.

[10]  Thomas Hambrock,et al.  Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. , 2010, The Journal of urology.

[11]  P. Choyke,et al.  Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies , 2008, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[12]  A. Zisman,et al.  Does prostate biopsy Gleason score accurately express the biologic features of prostate cancer? , 2007, Urologic oncology.

[13]  E. Bergstralh,et al.  Use of Gleason score, prostate specific antigen, seminal vesicle and margin status to predict biochemical failure after radical prostatectomy. , 2001, The Journal of urology.

[14]  Toshinori Hirai,et al.  Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas , 1999, Journal of magnetic resonance imaging : JMRI.

[15]  J. Kirkpatrick Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. , 1998, Journal of insurance medicine.

[16]  J. Neil Measurement of water motion (apparent diffusion) in biologial systems , 1997 .

[17]  I. Tuerk,et al.  Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center experience and an international meta-analysis. , 2008, European urology.

[18]  Jonathan I. Epstein,et al.  Recommendations for the reporting of prostate carcinoma , 2007, Virchows Archiv.

[19]  Thomas Hambrock,et al.  Thirty-Two-Channel Coil 3T Magnetic Resonance-Guided Biopsies of Prostate Tumor Suspicious Regions Identified on Multimodality 3T Magnetic Resonance Imaging: Technique and Feasibility , 2008, Investigative radiology.

[20]  K. Hosseinzadeh,et al.  Endorectal diffusion‐weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue , 2004, Journal of magnetic resonance imaging : JMRI.

[21]  M. Soloway,et al.  Trends in Gleason score: concordance between biopsy and prostatectomy over 15 years. , 2008, Urology.

[22]  N. deSouza,et al.  MAGNETIC RESONANCE IMAGING IN PROSTATE CANCER : VALUE OF APPARENT DIFFUSION COEFFICIENTS FOR IDENTIFYING MALIGNANT NODULES , 2010 .

[23]  S. Verma,et al.  Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. , 2011, AJR. American journal of roentgenology.

[24]  L. Turnbull,et al.  Diffusion‐weighted imaging of normal and malignant prostate tissue at 3.0T , 2006, Journal of magnetic resonance imaging : JMRI.

[25]  Fernando J. Kim,et al.  Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? , 2011 .

[26]  P. Choyke,et al.  Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. , 2009, Neoplasia.

[27]  H. Shinmoto,et al.  Prostate cancer screening: The clinical value of diffusion‐weighted imaging and dynamic MR imaging in combination with T2‐weighted imaging , 2007, Journal of magnetic resonance imaging : JMRI.

[28]  M. Reiser,et al.  Per-sextant localization and staging of prostate cancer: correlation of imaging findings with whole-mount step section histopathology. , 2007, AJR. American journal of roentgenology.

[29]  B. Issa,et al.  In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo‐planar imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[30]  S. Fosså,et al.  Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population‐based study , 2009, BJU international.

[31]  A. Billis Percent Gleason grade (4/5) as prognostic factor in prostate cancer diagnosed at transurethral resection. , 2002, International braz j urol : official journal of the Brazilian Society of Urology.

[32]  Katsuyoshi Ito,et al.  Apparent diffusion coefficient values in peripheral and transition zones of the prostate: Comparison between normal and malignant prostatic tissues and correlation with histologic grade , 2008, Journal of magnetic resonance imaging : JMRI.

[33]  Fernanda Philadelpho Arantes Pereira,et al.  Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values. , 2009, AJR. American journal of roentgenology.

[34]  Katsuyuki Nakanishi,et al.  Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: Can ADC values contribute to assess the aggressiveness of prostate cancer? , 2011, Journal of magnetic resonance imaging : JMRI.

[35]  Thomas L Chenevert,et al.  Diffusion imaging: insight to cell status and cytoarchitecture. , 2006, Neuroimaging clinics of North America.

[36]  A W Partin,et al.  Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. , 2002, Urology.

[37]  A. Qayyum Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. , 2009, Radiographics : a review publication of the Radiological Society of North America, Inc.

[38]  佐藤 千峰,et al.  Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate , 2006 .

[39]  Michael W Kattan,et al.  Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[40]  Michael W Kattan,et al.  Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. , 2007, Radiology.

[41]  Junqian Xu,et al.  Magnetic resonance diffusion characteristics of histologically defined prostate cancer in humans , 2009, Magnetic resonance in medicine.

[42]  M. Filippi,et al.  Basic concepts of advanced MRI techniques , 2008, Neurological Sciences.