Structure and Interdomain Interactions of a Hybrid Domain: A Disulphide-Rich Module of the Fibrillin/LTBP Superfamily of Matrix Proteins

[1]  P. Handford,et al.  A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition , 2008, Nature Structural &Molecular Biology.

[2]  Takako Sasaki,et al.  Targeting of Bone Morphogenetic Protein Growth Factor Complexes to Fibrillin* , 2008, Journal of Biological Chemistry.

[3]  V. Nelea,et al.  Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly , 2008, Proceedings of the National Academy of Sciences.

[4]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[5]  H. Dietz,et al.  Fibrillin‐rich microfibrils: Structural determinants of morphogenetic and homeostatic events , 2007, Journal of cellular physiology.

[6]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[7]  P. Handford,et al.  Structural and Functional Characterization of a Novel T Cell Receptor Co-regulatory Protein Complex, CD97-CD55* , 2007, Journal of Biological Chemistry.

[8]  Takako Sasaki,et al.  Fibrillin-1 Interactions with Fibulins Depend on the First Hybrid Domain and Provide an Adaptor Function to Tropoelastin* , 2007, Journal of Biological Chemistry.

[9]  C. Kielty,et al.  Fibrillin-1 regulates the bioavailability of TGFβ1 , 2007, The Journal of cell biology.

[10]  D. Keene,et al.  Effects of Fibrillin-1 Degradation on Microfibril Ultrastructure* , 2006, Journal of Biological Chemistry.

[11]  Clair Baldock,et al.  Marfan Syndrome-causing Mutations in Fibrillin-1 Result in Gross Morphological Alterations and Highlight the Structural Importance of the Second Hybrid Domain* , 2006, Journal of Biological Chemistry.

[12]  J. G. Grossmann,et al.  Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and mechanism for extensibility , 2006, Proceedings of the National Academy of Sciences.

[13]  D. Keene,et al.  The Prodomain of BMP-7 Targets the BMP-7 Complex to the Extracellular Matrix* , 2005, Journal of Biological Chemistry.

[14]  P. Handford,et al.  Ca2+-dependent Interface Formation in Fibrillin-1* , 2005, Journal of Biological Chemistry.

[15]  D. Stuart,et al.  Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. , 2004, Structure.

[16]  D. Keene,et al.  Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. , 2004, Genomics.

[17]  P. Handford,et al.  Solution structure of the third TB domain from LTBP1 provides insight into assembly of the large latent complex that sequesters latent TGF-beta. , 2003, Journal of molecular biology.

[18]  I. Campbell,et al.  Solution Structure and Dynamics of a Calcium Binding Epidermal Growth Factor-like Domain Pair from the Neonatal Region of Human Fibrillin-1* 210 , 2003, The Journal of Biological Chemistry.

[19]  D. Arking,et al.  Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome , 2003, Nature Genetics.

[20]  D. Rifkin,et al.  Latent Transforming Growth Factor β-binding Protein 1 Interacts with Fibrillin and Is a Microfibril-associated Protein* , 2003, The Journal of Biological Chemistry.

[21]  D. Reinhardt,et al.  Homo- and Heterotypic Fibrillin-1 and -2 Interactions Constitute the Basis for the Assembly of Microfibrils* , 2002, The Journal of Biological Chemistry.

[22]  A. Koster,et al.  The Supramolecular Organization of Fibrillin-Rich Microfibrils , 2001, The Journal of cell biology.

[23]  P. Handford,et al.  Molecular effects of calcium binding mutations in Marfan syndrome depend on domain context. , 2000, Human molecular genetics.

[24]  P. Handford,et al.  Characterisation of fibrillin-1 cDNA clones in a human fibroblast cell line that assembles microfibrils. , 2000, The international journal of biochemistry & cell biology.

[25]  D. Reinhardt,et al.  Initial Steps in Assembly of Microfibrils , 2000, The Journal of Biological Chemistry.

[26]  P. Handford,et al.  EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1. , 1999, Journal of molecular biology.

[27]  P. Handford,et al.  Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function. , 1999, Journal of molecular biology.

[28]  P. Handford,et al.  A Gly → Ser Change Causes Defective Folding in Vitro of Calcium-binding Epidermal Growth Factor-like Domains from Factor IX and Fibrillin-1* , 1998, The Journal of Biological Chemistry.

[29]  P. Handford,et al.  Solution structure of the transforming growth factor β‐binding protein‐like module, a domain associated with matrix fibrils , 1997, The EMBO journal.

[30]  S. Linse,et al.  The High Affinity Calcium-binding Sites in the Epidermal Growth Factor Module Region of Vitamin K-dependent Protein S* , 1997, The Journal of Biological Chemistry.

[31]  R. Timpl,et al.  Sequence and expression of a novel member (LTBP‐4) of the family of latent transforming growth factor‐β binding proteins , 1997 .

[32]  D. Keene,et al.  Calcium Determines the Shape of Fibrillin* , 1997, The Journal of Biological Chemistry.

[33]  D. Reinhardt,et al.  Calcium Stabilizes Fibrillin-1 against Proteolytic Degradation* , 1997, The Journal of Biological Chemistry.

[34]  I. Campbell,et al.  Solution Structure of a Pair of Calcium-Binding Epidermal Growth Factor-like Domains: Implications for the Marfan Syndrome and Other Genetic Disorders , 1996, Cell.

[35]  D. Keene,et al.  Fibrillin-1: organization in microfibrils and structural properties. , 1996, Journal of molecular biology.

[36]  P. Handford,et al.  Calcium binding properties of an epidermal growth factor-like domain pair from human fibrillin-1. , 1996, Journal of molecular biology.

[37]  G. Sutherland,et al.  Bovine latent transforming growth factor beta 1-binding protein 2: molecular cloning, identification of tissue isoforms, and immunolocalization to elastin-associated microfibrils , 1995, Molecular and cellular biology.

[38]  P. Handford,et al.  The structure of a Ca2+-binding epidermal growth factor-like domain: Its role in protein-protein interactions , 1995, Cell.

[39]  R. Mecham,et al.  Isolation of a Novel Latent Transforming Growth Factor-β Binding Protein Gene (LTBP-3) (*) , 1995, The Journal of Biological Chemistry.

[40]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[41]  R. Mecham,et al.  Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices , 1994, The Journal of cell biology.

[42]  B. Sykes,et al.  Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. , 1993, Human molecular genetics.

[43]  H. Dietz,et al.  Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end. , 1993, Genomics.

[44]  S. Linse,et al.  Calcium binding to calmodulin and its globular domains. , 1991, The Journal of biological chemistry.

[45]  K. Miyazono,et al.  TGF-β1 binding protein: A component of the large latent complex of TGF-β1 with multiple repeat sequences , 1990, Cell.

[46]  J. Kumaratilake,et al.  The tissue distribution of microfibrils reacting with a monospecific antibody to MAGP, the major glycoprotein antigen of elastin-associated microfibrils. , 1989, European journal of cell biology.

[47]  E. Engvall,et al.  Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils , 1986, The Journal of cell biology.

[48]  P. Colman,et al.  Structure of antibody-antigen complexes: implications for immune recognition. , 1988, Advances in immunology.

[49]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .