Photochemical depolymerisation of dermatan sulfate and analysis of the generated oligosaccharides.

[1]  Yuanhong Wang,et al.  Depolymerized glycosaminoglycan and its anticoagulant activities from sea cucumber Apostichopus japonicus. , 2015, International journal of biological macromolecules.

[2]  R. Woods,et al.  Fucosylated Chondroitin Sulfates from the Body Wall of the Sea Cucumber Holothuria forskali , 2014, The Journal of Biological Chemistry.

[3]  Shiguo Chen,et al.  Depolymerization of fucosylated chondroitin sulfate from sea cucumber, Pearsonothuria graeffei, via 60Co irradiation. , 2013, Carbohydrate polymers.

[4]  D. Uhrín,et al.  Structural characterisation of oligosaccharides obtained by Fenton-type radical depolymerisation of dermatan sulfate , 2012 .

[5]  R. Linhardt,et al.  Photochemical Preparation of a Novel Low Molecular Weight Heparin. , 2012, Carbohydrate polymers.

[6]  R. Linhardt,et al.  Controlled Photochemical Depolymerization of K5 Heparosan, a Bioengineered Heparin Precursor. , 2011, Carbohydrate polymers.

[7]  Jiaguo Yu,et al.  Quantitative characterization of hydroxyl radicals produced by various photocatalysts. , 2011, Journal of colloid and interface science.

[8]  Jinhua Zhao,et al.  Physicochemical characteristics and anticoagulant activities of low molecular weight fractions by free-radical depolymerization of a fucosylated chondroitin sulphate from sea cucumber Thelenata ananas , 2010 .

[9]  R. Linhardt,et al.  Partial depolymerization of pectin by a photochemical reaction. , 2010, Carbohydrate research.

[10]  Jinhua Zhao,et al.  Free-radical depolymerization of glycosaminoglycan from sea cucumber Thelenata ananas by hydrogen peroxide and copper ions , 2010 .

[11]  Jinhua Zhao,et al.  Preparation and characterization of molecular weight fractions of glycosaminoglycan from sea cucumber Thelenata ananas using free radical depolymerization. , 2010, Carbohydrate research.

[12]  G. Torri,et al.  Low-molecular-weight heparin from Cu2+ and Fe2+ Fenton type depolymerisation processes , 2010, Thrombosis and Haemostasis.

[13]  R. Linhardt,et al.  Photolytic depolymerization of alginate. , 2009, Carbohydrate research.

[14]  R. Linhardt,et al.  Solvolytic depolymerization of chondroitin and dermatan sulfates. , 2009, Carbohydrate research.

[15]  Elaine Gray,et al.  Heparin and low-molecular-weight heparin , 2008, Thrombosis and Haemostasis.

[16]  G. Torri,et al.  Structural modification induced in heparin by a Fenton-type depolymerization process. , 2007, Seminars in thrombosis and hemostasis.

[17]  G. David,et al.  Mammalian heparanase: what is the message? , 2007, Journal of cellular and molecular medicine.

[18]  L. Maggiore,et al.  Acute and chronic effects of a new low molecular weight dermatan sulphate (Desmin 370) on blood coagulation and fibrinolysis in healthy subjects , 2007, European Journal of Clinical Pharmacology.

[19]  J. Gallagher Multiprotein signalling complexes: regional assembly on heparan sulphate. , 2006, Biochemical Society transactions.

[20]  R. Linhardt,et al.  Heparin-Binding Domains in Vascular Biology , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[21]  C. Yomota,et al.  Ultrasonic depolymerization of hyaluronic acid , 2001 .

[22]  H. Nader,et al.  Distribution of sulfated glycosaminoglycans in the animal kingdom: widespread occurrence of heparin-like compounds in invertebrates. , 2000, Biochimica et biophysica acta.

[23]  D. Watt,et al.  Free radical induced oxidative depolymerisation of chondroitin sulphate and dermatan sulphate , 1997 .

[24]  R. Linhardt,et al.  Preparation and structure of heparin lyase-derived heparan sulfate oligosaccharides. , 1997, Glycobiology.

[25]  B. Mulloy,et al.  Structure and Anticoagulant Activity of a Fucosylated Chondroitin Sulfate from Echinoderm , 1996, The Journal of Biological Chemistry.

[26]  R. Linhardt,et al.  Preparation and structural characterization of large heparin-derived oligosaccharides. , 1995, Glycobiology.

[27]  H. Uchiyama,et al.  Chemical change involved in the oxidative-reductive depolymerization of heparin. , 1992, Carbohydrate research.

[28]  K. Numata,et al.  Structure of DHG, a depolymerized glycosaminoglycan from sea cucumber, Stichopus japonicus , 1992 .

[29]  S. Singer Intercellular communication and cell-cell adhesion. , 1992, Science.

[30]  B. Mulloy,et al.  Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues. , 1991, The Journal of biological chemistry.

[31]  J. Takamatsu,et al.  Antithrombotic and Anticoagulant Activity of Depolymerized Fragment of the Glycosaminoglycan Extracted from Stichopus japonicus Selenka , 1991, Thrombosis and Haemostasis.

[32]  D. Bergqvist,et al.  Effects of Low Molecular Weight Heparin and Unfragmented Heparin on Induction of Osteoporosis in Rats , 1990, Thrombosis and Haemostasis.

[33]  H. Uchiyama,et al.  Chemical change involved in the oxidative reductive depolymerization of hyaluronic acid. , 1990, The Journal of biological chemistry.

[34]  M. Monreal,et al.  Heparin-Related Osteoporosis in Rats , 1990 .

[35]  G. Houin,et al.  Pharmacologic properties of a low molecular weight dermatan sulfate: comparison with unfractionated dermatan sulfate. , 1990, The Journal of laboratory and clinical medicine.

[36]  P. Mourão,et al.  Occurrence of a unique fucose-branched chondroitin sulfate in the body wall of a sea cucumber. , 1988, The Journal of biological chemistry.

[37]  J. Fareed,et al.  STRUCTURAL STUDIES ON A BIOLOGICALLY ACTIVE HEXASACCHARIDE OBTAINED FROM HEPARIN , 1981, Annals of the New York Academy of Sciences.

[38]  H. Nader,et al.  Role of sulfated mucopolysaccharides in cell recognition and neoplastic transformation. , 1980, Anais da Academia Brasileira de Ciencias.

[39]  W. Comper,et al.  Physiological function of connective tissue polysaccharides. , 1978, Physiological reviews.

[40]  M. B. Mathews Connective tissue. Macromolecular structure and evolution. , 1975, Molecular biology, biochemistry, and biophysics.