MULTIPLE STAR FORMATION TO THE BOTTOM OF THE INITIAL MASS FUNCTION

The frequency and properties of multiple star systems offer powerful tests of star formation models. Multiplicity surveys over the past decade have shown that binary properties vary strongly with mass, but the functional forms and the interplay between frequency and semimajor axis remain largely unconstrained. We present the results of a large-scale survey of multiplicity at the bottom of the initial mass function in several nearby young associations, encompassing 78 very low mass members observed with Keck laser guide star adaptive optics. Our survey confirms the overall trend observed in the field for lower-mass binary systems to be less frequent and more compact, including a null detection for any substellar binary systems with separations wider than ~7 AU. Combined with a Bayesian re-analysis of existing surveys, our results demonstrate that the binary frequency and binary separations decline smoothly between masses of 0.5 M_☉ and 0.02 M_☉, though we cannot distinguish the functional form of this decline due to a degeneracy between the total binary frequency and the mean binary separation. We also show that the mass ratio distribution becomes progressively more concentrated at q ~ 1 for declining masses, though a small number of systems appear to have unusually wide separations and low-mass ratios for their mass. Finally, we compare our results to synthetic binary populations generated by smoothed particle hydrodynamic simulations, noting the similarities and discussing possible explanations for the differences.

[1]  S. Hodgkin,et al.  On the properties of young multiple stars , 2004, astro-ph/0403094.

[2]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[3]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[4]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[5]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[6]  O. Madelung,et al.  Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series , 1965 .

[7]  Michael C. Liu,et al.  ON THE DISTRIBUTION OF ORBITAL ECCENTRICITIES FOR VERY LOW-MASS BINARIES , 2011, 1103.5744.

[8]  R. F. Jameson,et al.  Near‐infrared cross‐dispersed spectroscopy of brown dwarf candidates in the Upper Sco association★ , 2007, 0711.1109.

[9]  M. Mateo,et al.  KINEMATICS OF THE ORION NEBULA CLUSTER: VELOCITY SUBSTRUCTURE AND SPECTROSCOPIC BINARIES , 2009, 0903.2775.

[10]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[11]  K. L. Luhman The Spatial Distribution of Brown Dwarfs in Taurus , 2006 .

[12]  Ž. Ivezić,et al.  The Galactic Distribution of Asymptotic Giant Branch Stars , 2002, astro-ph/0202407.

[13]  R. Jayawardhana,et al.  Multiplicity among Young Brown Dwarfs and Very Low Mass Stars , 2007, 0708.3851.

[14]  James Liebert,et al.  Meeting the Cool Neighbors. IX. The Luminosity Function of M7-L8 Ultracool Dwarfs in the Field , 2006, astro-ph/0609648.

[15]  L. Hillenbrand,et al.  Spatial Distributions of Young Stars , 2008, 0809.0893.

[16]  Star Counts Redivivus. IV. Density Laws through Photometric Parallaxes , 2002, astro-ph/0206323.

[17]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[18]  L. Hillenbrand,et al.  UNUSUALLY WIDE BINARIES: ARE THEY WIDE OR UNUSUAL? , 2009, 0908.1385.

[19]  D. York,et al.  Stellar Population Studies with the SDSS. I. The Vertical Distribution of Stars in the Milky Way , 2001 .

[20]  L. Hartmann,et al.  The Initial Mass Function in the Taurus Star-forming Region , 2002 .

[21]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[22]  R. Durisen,et al.  How do binary separations depend on cloud initial conditions , 2003 .

[23]  I. Bonnell,et al.  ACCRETION DURING BINARY STAR FORMATION. II : GASEOUS ACCRETION AND DISC FORMATION , 1997 .

[24]  K. Luhman A Census of the Chamaeleon I Star-forming Region , 2004, astro-ph/0402509.

[25]  J. Bochanski,et al.  IDENTIFICATION OF A WIDE, LOW-MASS MULTIPLE SYSTEM CONTAINING THE BROWN DWARF 2MASS J0850359+105716 , 2010, 1012.4232.

[26]  Lynne A. Hillenbrand,et al.  An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks , 2003, astro-ph/0312189.

[27]  R. Doyon,et al.  DISCOVERY OF THE WIDEST VERY LOW MASS FIELD BINARY , 2009, 0903.3251.

[28]  H. Zinnecker,et al.  Binary Stars in the Orion Nebula Cluster , 2006, Proceedings of the International Astronomical Union.

[29]  Austin,et al.  Observational Constraints on the Formation and Evolution of Binary Stars , 2001, astro-ph/0103098.

[30]  Keivan G. Stassun,et al.  SLOAN LOW-MASS WIDE PAIRS OF KINEMATICALLY EQUIVALENT STARS (SLoWPoKES): A CATALOG OF VERY WIDE, LOW-MASS PAIRS , 2010, 1004.2755.

[31]  Catherine Slesnick,et al.  A Large-Area Search for Low-Mass Objects in Upper Scorpius. I. The Photometric Campaign and New Brown Dwarfs , 2006 .

[32]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics , 2002 .

[33]  The Role of Mass and Environment in Multiple-Star Formation: A 2MASS Survey of Wide Multiplicity in Three Young Associations , 2007, astro-ph/0702545.

[34]  Q. Konopacky,et al.  New Very Low Mass Binaries in the Taurus Star-forming Region , 2007, astro-ph/0703567.

[35]  A Census of the Young Cluster IC 348 , 2003, astro-ph/0304409.

[36]  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field P , 2002, astro-ph/0211470.

[37]  Matthew Bate,et al.  Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation , 2008, 0811.0163.

[38]  W. B. Pearson Landolt–Börnstein. Numerical data and functional relationships in science and technology. Group III. Crystal and solid state physics. Vol. 7. Crystal structure data of inorganic compounds. Parts a and g by W. Pies and A. Weiss , 1975 .

[39]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[40]  P. Allen,et al.  Star Formation via the Little Guy: A Bayesian Study of Ultracool Dwarf Imaging Surveys for Companions , 2007, 0707.2064.

[41]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[42]  L. Hillenbrand,et al.  USco J1606-1935: An Unusually Wide Low-Mass Triple System? , 2007, 0704.0455.

[43]  I. Reid,et al.  Hubble Space Telescope NICMOS Observations of T Dwarfs: Brown Dwarf Multiplicity and New Probes of the L/T Transition , 2006, astro-ph/0605577.

[44]  Gerard Gilmore,et al.  New light on faint stars – III. Galactic structure towards the South Pole and the Galactic thick disc , 1983 .

[45]  Andrea Richichi,et al.  A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions , 1995 .

[46]  R. Klein,et al.  THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION , 2010, 1010.3702.

[47]  Lynne Hillenbrand,et al.  THE PALOMAR/KECK ADAPTIVE OPTICS SURVEY OF YOUNG SOLAR ANALOGS: EVIDENCE FOR A UNIVERSAL COMPANION MASS FUNCTION , 2008, 0808.2982.

[48]  Adam L. Kraus,et al.  Mapping the Shores of the Brown Dwarf Desert. I. Upper Scorpius , 2007, 1509.05217.

[49]  R. Doyon,et al.  Discovery of the Widest Very Low Mass Binary , 2007, astro-ph/0702647.

[50]  Debra A. Fischer,et al.  Multiplicity among M Dwarfs , 1992 .

[51]  K. Covey,et al.  Meeting the Cool Neighbors. VII. Spectroscopy of Faint Red NLTT Dwarfs , 2003, astro-ph/0308380.

[52]  Eduardo L. Martin,et al.  Multiplicity of Nearby Free-floating Ultracool Dwarfs: A Hubble Space Telescope WFPC2 Search for Companions , 2003, astro-ph/0305484.

[53]  A. Cimatti,et al.  The K20 survey - III. Photometric and spectroscopic properties of the sample , 2002, astro-ph/0206168.

[54]  Anthony G. A. Brown,et al.  Exploring the Full Stellar Population of the Upper Scorpius OB Association , 2002 .

[55]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[56]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[57]  G. Mamon,et al.  Stellar luminosity functions in the R, I, J, and K bands obtained by transformation from the visual band , 1982 .

[58]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[59]  Daniel J. Price,et al.  Inefficient star formation: the combined effects of magnetic fields and radiative feedback , 2009, 0904.4071.

[60]  L. Hillenbrand,et al.  The Stellar Populations of Praesepe and Coma Berenices , 2007, 0708.2719.

[61]  David Koerner,et al.  HUBBLE SPACE TELESCOPE/NICMOS Imaging of Disks and Envelopes around Very Young Stars , 1999, astro-ph/9902101.

[62]  L. Hillenbrand,et al.  THE COEVALITY OF YOUNG BINARY SYSTEMS , 2009, 0909.0509.

[63]  G. Neugebauer,et al.  The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey , 1993 .

[64]  Exeter,et al.  A survey for low-mass spectroscopic binary stars in the young clusters around σ Orionis and λ Orionis , 2008, 0801.3595.

[65]  Frantz Martinache,et al.  Mapping the Shores of the Brown Dwarf Desert. I. Upper Scorpius , 2008 .

[66]  L. Hillenbrand,et al.  A Large-Area Search for Low-Mass Objects in Upper Scorpius. II. Age and Mass Distributions , 2008, 0809.1436.

[67]  Beth Biller,et al.  A KECK LGS AO SEARCH FOR BROWN DWARF AND PLANETARY MASS COMPANIONS TO UPPER SCORPIUS BROWN DWARFS , 2011, 1101.4934.

[68]  Binary stars in young clusters: models versus observations of the Trapezium Cluster , 1999, astro-ph/9906460.

[69]  The widest ultracool binary , 2006, astro-ph/0612234.

[70]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[71]  J. Bahcall,et al.  Models for the Galaxy and the Predicted Star Counts , 1979 .

[72]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[73]  L. Hillenbrand,et al.  A Distributed Population of Low-Mass Pre-Main-Sequence Stars near the Taurus Molecular Clouds , 2006, astro-ph/0609048.

[74]  M. Lombardi,et al.  The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure , 2007, 0709.1164.

[75]  S. Bianchi The dust distribution in edge-on galaxies. Radiative transfer fits of V and K'-band images , 2007, 0705.1471.

[76]  L. Hillenbrand,et al.  Multiplicity at the Stellar/Substellar Boundary in Upper Scorpius , 2005, astro-ph/0507453.

[77]  Multiplicity and Optical Excess across the Substellar Boundary in Taurus , 2006, astro-ph/0602449.

[78]  Laird M. Close,et al.  Detection of Nine M8.0-L0.5 Binaries: The Very Low Mass Binary Population and Its Implications for Brown Dwarf and Very Low Mass Star Formation , 2003, astro-ph/0301095.

[79]  B. Reipurth,et al.  The Formation of Brown Dwarfs as Ejected Stellar Embryos , 2001, astro-ph/0103019.

[80]  Andrea Richichi,et al.  Binary Stars in the Orion Trapezium Cluster Core , 1998 .

[81]  K. Stassun,et al.  THE HIGH-ORDER MULTIPLICITY OF UNUSUALLY WIDE M DWARF BINARIES: ELEVEN NEW TRIPLE AND QUADRUPLE SYSTEMS , 2010, 1007.3735.

[82]  L. Loinard,et al.  VLBA DETERMINATION OF THE DISTANCE TO NEARBY STAR-FORMING REGIONS. III. HP TAU/G2 AND THE THREE-DIMENSIONAL STRUCTURE OF TAURUS , 2009, 0903.5338.

[83]  M. Bate Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation , 2011, 1110.1092.

[84]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[85]  ESO,et al.  A VLT/NACO survey for triple and quadruple systems among visual pre-main sequence binaries , , 2006, astro-ph/0608674.

[86]  M. Skrutskie,et al.  Near-Infrared Photometric Variability of Stars toward the Chamaeleon I Molecular Cloud , 2002, astro-ph/0204430.

[87]  S. Bontemps,et al.  Multiple protostellar systems II. A high resolution near-infrared imaging survey in nearby star-forming regions ⋆ , 2007, 0710.0827.

[88]  R. Jayawardhana,et al.  A Multiplicity Census of Young Stars in Chamaeleon I , 2008, 0803.0561.

[89]  A. M. Ghez,et al.  A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe , 2001, astro-ph/0111156.