Beyond pairwise clustering

We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms.

[1]  Scott W. Hadley,et al.  Approximation Techniques for Hypergraph Partitioning Problems , 1995, Discret. Appl. Math..

[2]  M. Minoux,et al.  An improved direct labeling method for the max–flow min–cut computation in large hypergraphs and applications , 2003 .

[3]  David J. Kriegman,et al.  What is the set of images of an object under all possible lighting conditions? , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  João A. Branco,et al.  Multidimensional scaling for n-tuples , 1991 .

[5]  Yi Ma,et al.  A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials , 2004, CVPR 2004.

[6]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[7]  Charles M. Fiduccia,et al.  A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.

[8]  P. Torr Geometric motion segmentation and model selection , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[11]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[13]  Andrew B. Kahng,et al.  Recent directions in netlist partitioning: a survey , 1995, Integr..

[14]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[15]  Michel Deza,et al.  n-Semimetrics , 2000, Eur. J. Comb..

[16]  Ronen Basri,et al.  Comparing images under variable illumination , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[17]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[18]  Michael Werman,et al.  Stochastic image segmentation by typical cuts , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[19]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[20]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[21]  S. Joly,et al.  Three-way distances , 1995 .

[22]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  René Vidal,et al.  A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[24]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[25]  Dorothea Wagner,et al.  Modeling Hypergraphs by Graphs with the Same Mincut Properties , 1993, Inf. Process. Lett..

[26]  M. Pavan,et al.  A new graph-theoretic approach to clustering and segmentation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[27]  David J. Kriegman,et al.  What Is the Set of Images of an Object Under All Possible Illumination Conditions? , 1998, International Journal of Computer Vision.

[28]  G. Karypis,et al.  Multilevel k-way hypergraph partitioning , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[29]  Venu Madhav Govindu,et al.  A tensor decomposition for geometric grouping and segmentation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Andrew B. Kahng,et al.  Recent directions in netlist partitioning , 1995 .

[31]  W. Heiser,et al.  Triadic Distance Models: Axiomatization and Least Squares Representation , 1997, Journal of mathematical psychology.

[32]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[33]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[34]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Jon M. Kleinberg,et al.  Clustering categorical data: an approach based on dynamical systems , 2000, The VLDB Journal.

[36]  Chikio Hayashi Two dimensional quantification based on the measure of dissimilarity among three elements , 1972 .

[37]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.