Class I approach as MGD generator

[1]  A. Banerjee,et al.  Buchdahl model in f(R,T) gravity: A comparative study with standard Einstein’s gravity , 2019, Physics of the Dark Universe.

[2]  S. K. Maurya,et al.  Anisotropic fluid spheres in the framework of f(R,T) gravity theory , 2019, Annals of Physics.

[3]  M. Estrada Erratum to: A way of decoupling gravitational sources in pure Lovelock gravity , 2019, The European Physical Journal C.

[4]  S. K. Maurya,et al.  Charged anisotropic compact star in f(R,T) gravity: A minimal geometric deformation gravitational decoupling approach , 2020 .

[5]  M. Daoud,et al.  Anisotropic relativistic fluid spheres: an embedding class I approach , 2019, The European Physical Journal C.

[6]  M. K. Jasim,et al.  Minimally deformed anisotropic model of class one space-time by gravitational decoupling , 2019, The European Physical Journal C.

[7]  A. Sotomayor,et al.  Isotropization and change of complexity by gravitational decoupling , 2019, The European Physical Journal C.

[8]  Á. Rincón,et al.  Minimal geometric deformation in a Reissner–Nordström background , 2019, The European Physical Journal C.

[9]  E. Contreras,et al.  Anisotropic neutron stars by gravitational decoupling , 2019, The European Physical Journal C.

[10]  M. Daoud,et al.  Study of anisotropic strange stars in f(R,T) gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling , 2019, Physical Review D.

[11]  S. Maharaj,et al.  Effect of pressure anisotropy on Buchdahl-type relativistic compact stars , 2019, General Relativity and Gravitation.

[12]  Z. Stuchlík,et al.  Anisotropic Tolman VII solution by gravitational decoupling , 2019, The European Physical Journal C.

[13]  F. Rahaman,et al.  Compact star models in class I spacetime , 2019, The European Physical Journal C.

[14]  A. Sotomayor,et al.  A causal Schwarzschild-de Sitter interior solution by gravitational decoupling , 2019, The European Physical Journal C.

[15]  F. Rahaman,et al.  A generalized Finch–Skea class one static solution , 2019, The European Physical Journal C.

[16]  P. Bargueño,et al.  A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach , 2019, The European Physical Journal C.

[17]  E. Contreras Gravitational decoupling in 2  +  1 dimensional space-times with cosmological term , 2019, Classical and Quantum Gravity.

[18]  S. K. Maurya,et al.  Generalized relativistic anisotropic compact star models by gravitational decoupling , 2019, The European Physical Journal C.

[19]  J. Ovalle Decoupling gravitational sources in general relativity: The extended case , 2018, Physics Letters B.

[20]  M. K. Jasim,et al.  Anisotropic compact stars in the Buchdahl model: A comprehensive study , 2018, Physical Review D.

[21]  S. Ray,et al.  Exploring physical features of anisotropic strange stars beyond standard maximum mass limit in $f\left(R,\mathcal {T}\right)$ gravity , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  R. Gomez-Ambrosio,et al.  Studies of dimension-six EFT effects in vector boson scattering , 2018, The European Physical Journal C.

[23]  R. Prado,et al.  The gravitational decoupling method: the higher-dimensional case to find new analytic solutions , 2018, The European Physical Journal Plus.

[24]  A. Sotomayor,et al.  Einstein-Klein-Gordon system by gravitational decoupling , 2018, EPL (Europhysics Letters).

[25]  A. Sotomayor,et al.  A simple method to generate exact physically acceptable anisotropic solutions in general relativity , 2018, The European Physical Journal Plus.

[26]  Á. Rincón,et al.  Minimal geometric deformation in a cloud of strings , 2018, The European Physical Journal C.

[27]  P. Bargueño,et al.  Minimal geometric deformation in asymptotically (A-)dS space-times and the isotropic sector for a polytropic black hole , 2018, The European Physical Journal C.

[28]  F. Tello‐Ortiz,et al.  Compact anisotropic models in general relativity by gravitational decoupling , 2018, The European Physical Journal C.

[29]  D. Deb,et al.  Relativistic fluid spheres with Karmarkar condition , 2018, International Journal of Modern Physics D.

[30]  E. Contreras Minimal Geometric Deformation: the inverse problem , 2018, The European Physical Journal C.

[31]  Y. K. Gupta,et al.  Anisotropic strange stars in Tolman–Kuchowicz spacetime , 2018, The European Physical Journal C.

[32]  Rafael Pérez Graterol A new anisotropic solution by MGD gravitational decoupling , 2018, The European Physical Journal Plus.

[33]  S. Maharaj,et al.  Relativistic stars with conformal symmetry , 2018, The European Physical Journal C.

[34]  P. Bargueño,et al.  Minimal geometric deformation decoupling in $$2+1$$2+1 dimensional space–times , 2018, The European Physical Journal C.

[35]  N. Tewari,et al.  Embedded class solutions compatible for physical compact stars in general relativity , 2018 .

[36]  F. Tello‐Ortiz,et al.  Charged anisotropic compact objects by gravitational decoupling , 2018, The European Physical Journal C.

[37]  S. Maharaj,et al.  New anisotropic fluid spheres from embedding , 2018 .

[38]  P. León,et al.  Using MGD Gravitational Decoupling to Extend the Isotropic Solutions of Einstein Equations to the Anisotropical Domain , 2018, Fortschritte der Physik.

[39]  A. Sotomayor,et al.  Black holes by gravitational decoupling , 2018, The European Physical Journal C.

[40]  M. H. Murad Some families of relativistic anisotropic compact stellar models embedded in pseudo-Euclidean space $$E^5$$E5: an algorithm , 2018 .

[41]  F. Tello‐Ortiz,et al.  A new family of analytical anisotropic solutions by gravitational decoupling , 2018, The European Physical Journal Plus.

[42]  Á. Rincón,et al.  Gravitational decoupled anisotropies in compact stars , 2018, 1802.08000.

[43]  A. Banerjee,et al.  Role of pressure anisotropy on relativistic compact stars , 2017, 1710.10463.

[44]  P. Channuie,et al.  Relativistic compact stars with charged anisotropic matter , 2017, 1711.03412.

[45]  P. Bhar,et al.  A comparative study on generalized model of anisotropic compact star satisfying the Karmarkar condition , 2017 .

[46]  Y. K. Gupta,et al.  Compact stars with specific mass function , 2017, 1708.06608.

[47]  A. Sotomayor,et al.  Anisotropic solutions by gravitational decoupling , 2017, 1708.00407.

[48]  N. Pant,et al.  New interior solution describing relativistic fluid sphere , 2017 .

[49]  P. Bhar,et al.  Conformally non-flat spacetime representing dense compact objects , 2017 .

[50]  M. Govender,et al.  A family of charged compact objects with anisotropic pressure , 2017, 1705.04292.

[51]  J. Ovalle Decoupling gravitational sources in general relativity: from perfect to anisotropic fluids , 2017, 1704.05899.

[52]  M. Govender,et al.  Generating physically realizable stellar structures via embedding , 2017, The European Physical Journal C.

[53]  B. S. Ratanpal,et al.  Anisotropic stars for spherically symmetric spacetimes satisfying the Karmarkar condition , 2017, 1703.01724.

[54]  K. Singh,et al.  A hybrid space–time of Schwarzschild interior and Vaidya–Tikekar solution as an embedding class I , 2017 .

[55]  S. Maharaj,et al.  Anisotropic fluid spheres of embedding class one using Karmarkar condition , 2017, 1702.04192.

[56]  Y. K. Gupta,et al.  Relativistic anisotropic models for compact star with equation of state p = f(ρ) , 2017 .

[57]  K. Singh,et al.  A 4D spacetime embedded in a 5D pseudo-Euclidean space describing interior of compact stars , 2017 .

[58]  K. Singh,et al.  A new relativistic stellar model with anisotropic fluid in Karmarkar space–time , 2017 .

[59]  Y. K. Gupta,et al.  All spherically symmetric charged anisotropic solutions for compact stars , 2015, 1502.01915.

[60]  A. Sotomayor,et al.  The Minimal Geometric Deformation Approach: A Brief Introduction , 2016, 1612.07926.

[61]  C. Moustakidis The stability of relativistic stars and the role of the adiabatic index , 2016, 1612.01726.

[62]  K. Singh,et al.  Physical viability of fluid spheres satisfying the Karmarkar condition , 2016, The European Physical Journal C.

[63]  N. Pant,et al.  Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.

[64]  Y. K. Gupta,et al.  A new exact anisotropic solution of embedding class one , 2016 .

[65]  Y. K. Gupta,et al.  Generalised model for anisotropic compact stars , 2016, 1607.05582.

[66]  T. Harko,et al.  Mass bounds for compact spherically symmetric objects in generalized gravity theories , 2016, 1606.05515.

[67]  Y. K. Gupta,et al.  A new model for spherically symmetric anisotropic compact star , 2016 .

[68]  J. Ovalle Extending the geometric deformation: New black hole solutions , 2015, 1510.00855.

[69]  Y. K. Gupta,et al.  Spherically symmetric charged compact stars , 2015, The European Physical Journal C.

[70]  Y. K. Gupta,et al.  Relativistic electromagnetic mass models in spherically symmetric spacetime , 2015, 1507.01862.

[71]  Y. K. Gupta,et al.  Anisotropic models for compact stars , 2015, 1504.00209.

[72]  R. Rocha,et al.  The minimal geometric deformation approach extended , 2015, 1503.02873.

[73]  R. Casadio,et al.  Classical tests of general relativity: Brane-world Sun from minimal geometric deformation , 2015, 1503.02316.

[74]  L. Gergely,et al.  Brane-world stars with a solid crust and vacuum exterior , 2014, 1405.0252.

[75]  F. Linares,et al.  Tolman IV solution in the Randall-Sundrum Braneworld , 2013, 1311.1844.

[76]  F. Linares,et al.  The role of exterior Weyl fluids on compact stellar structures in Randall–Sundrum gravity , 2013, 1304.5995.

[77]  Y. K. Gupta,et al.  Charged fluid to anisotropic fluid distribution in general relativity , 2013 .

[78]  S. Ray,et al.  Anisotropic strange star with de Sitter spacetime , 2012, 1201.5234.

[79]  A. Yadav,et al.  Singularity-free dark energy star , 2011, 1102.1382.

[80]  J. Orosz,et al.  REFINED NEUTRON STAR MASS DETERMINATIONS FOR SIX ECLIPSING X-RAY PULSAR BINARIES , 2011, 1101.2465.

[81]  A. A. Usmani,et al.  A comparison of Hořava–Lifshitz gravity and Einstein gravity through thin-shell wormhole construction , 2010, 1011.3600.

[82]  S. Ray,et al.  Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state , 2010, 1007.1889.

[83]  B. Ivanov The Importance of Anisotropy for Relativistic Fluids with Spherical Symmetry , 2010 .

[84]  M. Malheiro,et al.  Electrically charged strange quark stars , 2009, 0907.5537.

[85]  S. Viaggiu Modeling Usual and Unusual Anisotropic Spheres , 2008, 0810.2209.

[86]  L. Herrera,et al.  All static spherically symmetric anisotropic solutions of Einstein's equations , 2007, 0712.0713.

[87]  J. Ovalle SEARCHING EXACT SOLUTIONS FOR COMPACT STARS IN BRANEWORLD: A CONJECTURE , 2007, gr-qc/0703095.

[88]  L. Núñez,et al.  Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.

[89]  K. Lake Galactic potentials. , 2003, Physical review letters.

[90]  K. Lake All static spherically symmetric perfect-fluid solutions of Einstein’s equations , 2002, gr-qc/0209104.

[91]  T. Harko,et al.  Anisotropic stars in general relativity , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[92]  T. Harko,et al.  An Exact Anisotropic Quark Star Model , 2002 .

[93]  T. Harko,et al.  EXACT MODELS FOR ANISOTROPIC RELATIVISTIC STARS , 2002 .

[94]  M. Gleiser,et al.  Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.

[95]  K. Lake,et al.  Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations , 1998, gr-qc/9809013.

[96]  L. Herrera,et al.  Cracking of Homogeneous Self-Gravitating Compact Objects Induced by Fluctuations of Local Anisotropy , 1997 .

[97]  L. Herrera,et al.  Local anisotropy in self-gravitating systems , 1997 .

[98]  M. Mars,et al.  The 2m ≤ r property of spherically symmetric static space-times , 1996, gr-qc/0202003.

[99]  L. Herrera,et al.  Jeans Mass for Anisotropic Matter , 1995 .

[100]  L. Herrera,et al.  Tidal forces and fragmentation of self-gravitating compact objects , 1994 .

[101]  A. Mehra,et al.  Anisotropic spheres with variable energy density in general relativity , 1994 .

[102]  N. O. Santos,et al.  Dynamical instability for radiating anisotropic collapse , 1993 .

[103]  T. Baumgarte,et al.  Regularity of spherically symmetric static solutions of the Einstein equations , 1993 .

[104]  H. Bondi Anisotropic spheres in general relativity , 1992 .

[105]  L. Herrera,et al.  Dynamical instability in the collapse of anisotropic matter , 1992 .

[106]  L. Herrera Cracking of self-gravitating compact objects , 1992 .

[107]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[108]  R. Chan,et al.  Heat flow and dynamical instability in spherical collapse , 1989 .

[109]  J. Skea,et al.  A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .

[110]  J. P. Leon New analytical models for anisotropic spheres in general relativity , 1987 .

[111]  J. L. Ponce de Léon General relativistic electromagnetic mass models of neutral spherically symmetric systems , 1987 .

[112]  L. Herrera,et al.  Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .

[113]  L. Witten,et al.  Evolution of radiating anisotropic spheres in general relativity , 1982 .

[114]  S. N. Pandey,et al.  Insufficiency of Karmarkar's condition , 1982 .

[115]  L. Witten,et al.  Some models of anisotropic spheres in general relativity , 1981 .

[116]  P. Letelier Anisotropic fluids with two-perfect-fluid components , 1980 .

[117]  R. Adler A fluid sphere in general relativity , 1974 .

[118]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[119]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .

[120]  W. Israel Singular hypersurfaces and thin shells in general relativity , 1966 .

[121]  S. Chandrasekhar The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .

[122]  S. Chandrasekhar Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity , 1964 .

[123]  K. R. Karmarkar Gravitational metrics of spherical symmetry and class one , 1948 .

[124]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[125]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .