Class I approach as MGD generator
暂无分享,去创建一个
[1] A. Banerjee,et al. Buchdahl model in f(R,T) gravity: A comparative study with standard Einstein’s gravity , 2019, Physics of the Dark Universe.
[2] S. K. Maurya,et al. Anisotropic fluid spheres in the framework of f(R,T) gravity theory , 2019, Annals of Physics.
[3] M. Estrada. Erratum to: A way of decoupling gravitational sources in pure Lovelock gravity , 2019, The European Physical Journal C.
[4] S. K. Maurya,et al. Charged anisotropic compact star in f(R,T) gravity: A minimal geometric deformation gravitational decoupling approach , 2020 .
[5] M. Daoud,et al. Anisotropic relativistic fluid spheres: an embedding class I approach , 2019, The European Physical Journal C.
[6] M. K. Jasim,et al. Minimally deformed anisotropic model of class one space-time by gravitational decoupling , 2019, The European Physical Journal C.
[7] A. Sotomayor,et al. Isotropization and change of complexity by gravitational decoupling , 2019, The European Physical Journal C.
[8] Á. Rincón,et al. Minimal geometric deformation in a Reissner–Nordström background , 2019, The European Physical Journal C.
[9] E. Contreras,et al. Anisotropic neutron stars by gravitational decoupling , 2019, The European Physical Journal C.
[10] M. Daoud,et al. Study of anisotropic strange stars in f(R,T) gravity: An embedding approach under the simplest linear functional of the matter-geometry coupling , 2019, Physical Review D.
[11] S. Maharaj,et al. Effect of pressure anisotropy on Buchdahl-type relativistic compact stars , 2019, General Relativity and Gravitation.
[12] Z. Stuchlík,et al. Anisotropic Tolman VII solution by gravitational decoupling , 2019, The European Physical Journal C.
[13] F. Rahaman,et al. Compact star models in class I spacetime , 2019, The European Physical Journal C.
[14] A. Sotomayor,et al. A causal Schwarzschild-de Sitter interior solution by gravitational decoupling , 2019, The European Physical Journal C.
[15] F. Rahaman,et al. A generalized Finch–Skea class one static solution , 2019, The European Physical Journal C.
[16] P. Bargueño,et al. A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach , 2019, The European Physical Journal C.
[17] E. Contreras. Gravitational decoupling in 2 + 1 dimensional space-times with cosmological term , 2019, Classical and Quantum Gravity.
[18] S. K. Maurya,et al. Generalized relativistic anisotropic compact star models by gravitational decoupling , 2019, The European Physical Journal C.
[19] J. Ovalle. Decoupling gravitational sources in general relativity: The extended case , 2018, Physics Letters B.
[20] M. K. Jasim,et al. Anisotropic compact stars in the Buchdahl model: A comprehensive study , 2018, Physical Review D.
[21] S. Ray,et al. Exploring physical features of anisotropic strange stars beyond standard maximum mass limit in $f\left(R,\mathcal {T}\right)$ gravity , 2018, Monthly Notices of the Royal Astronomical Society.
[22] R. Gomez-Ambrosio,et al. Studies of dimension-six EFT effects in vector boson scattering , 2018, The European Physical Journal C.
[23] R. Prado,et al. The gravitational decoupling method: the higher-dimensional case to find new analytic solutions , 2018, The European Physical Journal Plus.
[24] A. Sotomayor,et al. Einstein-Klein-Gordon system by gravitational decoupling , 2018, EPL (Europhysics Letters).
[25] A. Sotomayor,et al. A simple method to generate exact physically acceptable anisotropic solutions in general relativity , 2018, The European Physical Journal Plus.
[26] Á. Rincón,et al. Minimal geometric deformation in a cloud of strings , 2018, The European Physical Journal C.
[27] P. Bargueño,et al. Minimal geometric deformation in asymptotically (A-)dS space-times and the isotropic sector for a polytropic black hole , 2018, The European Physical Journal C.
[28] F. Tello‐Ortiz,et al. Compact anisotropic models in general relativity by gravitational decoupling , 2018, The European Physical Journal C.
[29] D. Deb,et al. Relativistic fluid spheres with Karmarkar condition , 2018, International Journal of Modern Physics D.
[30] E. Contreras. Minimal Geometric Deformation: the inverse problem , 2018, The European Physical Journal C.
[31] Y. K. Gupta,et al. Anisotropic strange stars in Tolman–Kuchowicz spacetime , 2018, The European Physical Journal C.
[32] Rafael Pérez Graterol. A new anisotropic solution by MGD gravitational decoupling , 2018, The European Physical Journal Plus.
[33] S. Maharaj,et al. Relativistic stars with conformal symmetry , 2018, The European Physical Journal C.
[34] P. Bargueño,et al. Minimal geometric deformation decoupling in $$2+1$$2+1 dimensional space–times , 2018, The European Physical Journal C.
[35] N. Tewari,et al. Embedded class solutions compatible for physical compact stars in general relativity , 2018 .
[36] F. Tello‐Ortiz,et al. Charged anisotropic compact objects by gravitational decoupling , 2018, The European Physical Journal C.
[37] S. Maharaj,et al. New anisotropic fluid spheres from embedding , 2018 .
[38] P. León,et al. Using MGD Gravitational Decoupling to Extend the Isotropic Solutions of Einstein Equations to the Anisotropical Domain , 2018, Fortschritte der Physik.
[39] A. Sotomayor,et al. Black holes by gravitational decoupling , 2018, The European Physical Journal C.
[40] M. H. Murad. Some families of relativistic anisotropic compact stellar models embedded in pseudo-Euclidean space $$E^5$$E5: an algorithm , 2018 .
[41] F. Tello‐Ortiz,et al. A new family of analytical anisotropic solutions by gravitational decoupling , 2018, The European Physical Journal Plus.
[42] Á. Rincón,et al. Gravitational decoupled anisotropies in compact stars , 2018, 1802.08000.
[43] A. Banerjee,et al. Role of pressure anisotropy on relativistic compact stars , 2017, 1710.10463.
[44] P. Channuie,et al. Relativistic compact stars with charged anisotropic matter , 2017, 1711.03412.
[45] P. Bhar,et al. A comparative study on generalized model of anisotropic compact star satisfying the Karmarkar condition , 2017 .
[46] Y. K. Gupta,et al. Compact stars with specific mass function , 2017, 1708.06608.
[47] A. Sotomayor,et al. Anisotropic solutions by gravitational decoupling , 2017, 1708.00407.
[48] N. Pant,et al. New interior solution describing relativistic fluid sphere , 2017 .
[49] P. Bhar,et al. Conformally non-flat spacetime representing dense compact objects , 2017 .
[50] M. Govender,et al. A family of charged compact objects with anisotropic pressure , 2017, 1705.04292.
[51] J. Ovalle. Decoupling gravitational sources in general relativity: from perfect to anisotropic fluids , 2017, 1704.05899.
[52] M. Govender,et al. Generating physically realizable stellar structures via embedding , 2017, The European Physical Journal C.
[53] B. S. Ratanpal,et al. Anisotropic stars for spherically symmetric spacetimes satisfying the Karmarkar condition , 2017, 1703.01724.
[54] K. Singh,et al. A hybrid space–time of Schwarzschild interior and Vaidya–Tikekar solution as an embedding class I , 2017 .
[55] S. Maharaj,et al. Anisotropic fluid spheres of embedding class one using Karmarkar condition , 2017, 1702.04192.
[56] Y. K. Gupta,et al. Relativistic anisotropic models for compact star with equation of state p = f(ρ) , 2017 .
[57] K. Singh,et al. A 4D spacetime embedded in a 5D pseudo-Euclidean space describing interior of compact stars , 2017 .
[58] K. Singh,et al. A new relativistic stellar model with anisotropic fluid in Karmarkar space–time , 2017 .
[59] Y. K. Gupta,et al. All spherically symmetric charged anisotropic solutions for compact stars , 2015, 1502.01915.
[60] A. Sotomayor,et al. The Minimal Geometric Deformation Approach: A Brief Introduction , 2016, 1612.07926.
[61] C. Moustakidis. The stability of relativistic stars and the role of the adiabatic index , 2016, 1612.01726.
[62] K. Singh,et al. Physical viability of fluid spheres satisfying the Karmarkar condition , 2016, The European Physical Journal C.
[63] N. Pant,et al. Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.
[64] Y. K. Gupta,et al. A new exact anisotropic solution of embedding class one , 2016 .
[65] Y. K. Gupta,et al. Generalised model for anisotropic compact stars , 2016, 1607.05582.
[66] T. Harko,et al. Mass bounds for compact spherically symmetric objects in generalized gravity theories , 2016, 1606.05515.
[67] Y. K. Gupta,et al. A new model for spherically symmetric anisotropic compact star , 2016 .
[68] J. Ovalle. Extending the geometric deformation: New black hole solutions , 2015, 1510.00855.
[69] Y. K. Gupta,et al. Spherically symmetric charged compact stars , 2015, The European Physical Journal C.
[70] Y. K. Gupta,et al. Relativistic electromagnetic mass models in spherically symmetric spacetime , 2015, 1507.01862.
[71] Y. K. Gupta,et al. Anisotropic models for compact stars , 2015, 1504.00209.
[72] R. Rocha,et al. The minimal geometric deformation approach extended , 2015, 1503.02873.
[73] R. Casadio,et al. Classical tests of general relativity: Brane-world Sun from minimal geometric deformation , 2015, 1503.02316.
[74] L. Gergely,et al. Brane-world stars with a solid crust and vacuum exterior , 2014, 1405.0252.
[75] F. Linares,et al. Tolman IV solution in the Randall-Sundrum Braneworld , 2013, 1311.1844.
[76] F. Linares,et al. The role of exterior Weyl fluids on compact stellar structures in Randall–Sundrum gravity , 2013, 1304.5995.
[77] Y. K. Gupta,et al. Charged fluid to anisotropic fluid distribution in general relativity , 2013 .
[78] S. Ray,et al. Anisotropic strange star with de Sitter spacetime , 2012, 1201.5234.
[79] A. Yadav,et al. Singularity-free dark energy star , 2011, 1102.1382.
[80] J. Orosz,et al. REFINED NEUTRON STAR MASS DETERMINATIONS FOR SIX ECLIPSING X-RAY PULSAR BINARIES , 2011, 1101.2465.
[81] A. A. Usmani,et al. A comparison of Hořava–Lifshitz gravity and Einstein gravity through thin-shell wormhole construction , 2010, 1011.3600.
[82] S. Ray,et al. Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state , 2010, 1007.1889.
[83] B. Ivanov. The Importance of Anisotropy for Relativistic Fluids with Spherical Symmetry , 2010 .
[84] M. Malheiro,et al. Electrically charged strange quark stars , 2009, 0907.5537.
[85] S. Viaggiu. Modeling Usual and Unusual Anisotropic Spheres , 2008, 0810.2209.
[86] L. Herrera,et al. All static spherically symmetric anisotropic solutions of Einstein's equations , 2007, 0712.0713.
[87] J. Ovalle. SEARCHING EXACT SOLUTIONS FOR COMPACT STARS IN BRANEWORLD: A CONJECTURE , 2007, gr-qc/0703095.
[88] L. Núñez,et al. Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.
[89] K. Lake. Galactic potentials. , 2003, Physical review letters.
[90] K. Lake. All static spherically symmetric perfect-fluid solutions of Einstein’s equations , 2002, gr-qc/0209104.
[91] T. Harko,et al. Anisotropic stars in general relativity , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[92] T. Harko,et al. An Exact Anisotropic Quark Star Model , 2002 .
[93] T. Harko,et al. EXACT MODELS FOR ANISOTROPIC RELATIVISTIC STARS , 2002 .
[94] M. Gleiser,et al. Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.
[95] K. Lake,et al. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations , 1998, gr-qc/9809013.
[96] L. Herrera,et al. Cracking of Homogeneous Self-Gravitating Compact Objects Induced by Fluctuations of Local Anisotropy , 1997 .
[97] L. Herrera,et al. Local anisotropy in self-gravitating systems , 1997 .
[98] M. Mars,et al. The 2m ≤ r property of spherically symmetric static space-times , 1996, gr-qc/0202003.
[99] L. Herrera,et al. Jeans Mass for Anisotropic Matter , 1995 .
[100] L. Herrera,et al. Tidal forces and fragmentation of self-gravitating compact objects , 1994 .
[101] A. Mehra,et al. Anisotropic spheres with variable energy density in general relativity , 1994 .
[102] N. O. Santos,et al. Dynamical instability for radiating anisotropic collapse , 1993 .
[103] T. Baumgarte,et al. Regularity of spherically symmetric static solutions of the Einstein equations , 1993 .
[104] H. Bondi. Anisotropic spheres in general relativity , 1992 .
[105] L. Herrera,et al. Dynamical instability in the collapse of anisotropic matter , 1992 .
[106] L. Herrera. Cracking of self-gravitating compact objects , 1992 .
[107] Achim Weiss,et al. Stellar Structure and Evolution , 1990 .
[108] R. Chan,et al. Heat flow and dynamical instability in spherical collapse , 1989 .
[109] J. Skea,et al. A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .
[110] J. P. Leon. New analytical models for anisotropic spheres in general relativity , 1987 .
[111] J. L. Ponce de Léon. General relativistic electromagnetic mass models of neutral spherically symmetric systems , 1987 .
[112] L. Herrera,et al. Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions , 1985 .
[113] L. Witten,et al. Evolution of radiating anisotropic spheres in general relativity , 1982 .
[114] S. N. Pandey,et al. Insufficiency of Karmarkar's condition , 1982 .
[115] L. Witten,et al. Some models of anisotropic spheres in general relativity , 1981 .
[116] P. Letelier. Anisotropic fluids with two-perfect-fluid components , 1980 .
[117] R. Adler. A fluid sphere in general relativity , 1974 .
[118] E. Liang,et al. Anisotropic spheres in general relativity , 1974 .
[119] M. Ruderman. Pulsars: Structure and Dynamics , 1972 .
[120] W. Israel. Singular hypersurfaces and thin shells in general relativity , 1966 .
[121] S. Chandrasekhar. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .
[122] S. Chandrasekhar. Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity , 1964 .
[123] K. R. Karmarkar. Gravitational metrics of spherical symmetry and class one , 1948 .
[124] J. Oppenheimer,et al. On Massive neutron cores , 1939 .
[125] R. Tolman. Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .