Variational calculus with conformable fractional derivatives
暂无分享,去创建一个
[1] Delfim F. M. Torres,et al. Fractional Noether's theorem in the Riesz-Caputo sense , 2010, Appl. Math. Comput..
[2] Thabet Abdeljawad,et al. On conformable fractional calculus , 2015, J. Comput. Appl. Math..
[3] Delfim F. M. Torres,et al. The DuBois–Reymond Fundamental Lemma of the Fractional Calculus of Variations and an Euler–Lagrange Equation Involving Only Derivatives of Caputo , 2012, J. Optim. Theory Appl..
[4] Agnieszka B. Malinowska,et al. Advanced Methods in the Fractional Calculus of Variations , 2015 .
[5] Delfim F. M. Torres,et al. Fractional Optimal Control in the Sense of Caputo and the Fractional Noether's Theorem , 2007, 0712.1844.
[6] Delfim F. M. Torres,et al. Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.
[7] J. Logan. Invariant Variational Principles , 1977 .
[8] O. Agrawal,et al. Fractional hamilton formalism within caputo’s derivative , 2006, math-ph/0612025.
[9] Delfim F. M. Torres,et al. A Conformable Fractional Calculus on Arbitrary Time Scales , 2015, 1505.03134.
[10] M. J. Lazo,et al. The action principle for dissipative systems , 2014, 1412.5109.
[11] Delfim F. M. Torres,et al. A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .
[12] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[13] Agnieszka B. Malinowska,et al. Introduction to the Fractional Calculus of Variations , 2012 .
[14] Delfim F. M. Torres,et al. Non-conservative Noether's theorem for fractional action-like variational problems with intrinsic and observer times , 2007, 0711.0645.
[15] Agnieszka B. Malinowska,et al. Fractional Calculus of Variations in Terms of a Generalized Fractional Integral with Applications to Physics , 2012, 1203.1961.
[16] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .
[17] Delfim F. M. Torres. On the Noether theorem for optimal control , 2001, 2001 European Control Conference (ECC).
[18] Nonconservative Noether's Theorem in Optimal Control , 2005, math/0512468.
[19] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[20] Delfim F. M. Torres. Conservation Laws in Optimal Control , 2002 .
[21] Quasi-Invariant Optimal Control Problems , 2003, math/0302264.
[22] Delfim F. M. Torres,et al. Nonsymmetric and symmetric fractional calculi on arbitrary nonempty closed sets , 2015, 1502.07277.
[23] Juan J. Nieto,et al. Three-Point Boundary Value Problems for Conformable Fractional Differential Equations , 2015 .
[24] D. Djukić,et al. Noether's theorem for optimum control systems , 1973 .
[25] Jacky Cresson,et al. Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.
[26] Delfim F. M. Torres,et al. A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration , 2014, Signal Process..
[27] F. Mainardi,et al. Recent history of fractional calculus , 2011 .
[28] M. Sababheh,et al. A new definition of fractional derivative , 2014, J. Comput. Appl. Math..
[29] Delfim F. M. Torres,et al. Fractional order optimal control problems with free terminal time , 2013, 1302.1717.
[30] Frans Cantrijn,et al. GENERALIZATIONS OF NOETHER'S THEOREM IN CLASSICAL MECHANICS* , 1981 .
[31] Delfim F. M. Torres,et al. Fractional conservation laws in optimal control theory , 2007, 0711.0609.
[32] Om P. Agrawal,et al. Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .
[33] Douglas R. Anderson,et al. FRACTIONAL-ORDER BOUNDARY VALUE PROBLEM WITH STURM-LIOUVILLE BOUNDARY CONDITIONS , 2014, 1411.5622.
[34] Delfim F. M. Torres,et al. Existence of solution to a local fractional nonlinear differential equation , 2016, J. Comput. Appl. Math..
[35] Agnieszka B. Malinowska,et al. Fractional Variational Calculus with Classical and Combined Caputo Derivatives , 2011, 1101.2932.
[36] S. Pooseh. Computational Methods in the Fractional Calculus of Variations , 2013, 1312.4064.
[37] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[38] P. S. Bauer. Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[39] Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations , 2004 .
[40] Frederick E. Riewe,et al. Mechanics with fractional derivatives , 1997 .
[41] M. Shapiro,et al. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric , 2016 .