Calculation of Julia Sets by Equipotential Point Algorithm
暂无分享,去创建一个
[1] X. Y. Wang,et al. Noise-perturbed quaternionic Mandelbrot sets , 2009, Int. J. Comput. Math..
[2] Milan Tuba,et al. A new visualization algorithm for the mandelbrot set , 2009 .
[3] Qin Xuan-yun,et al. Research for relationship between general Julia set and iteration parameters , 2009 .
[4] Cao,et al. A new escape time algorithm of constructing Julia set , 2007 .
[5] K. Stefański. Fractals: form, chance and dimension : B.B. Mandelbrot (International Business Machines, Thomas J. Watson Research Center) : W.H. Freeman and Co., San Francisco, 1977, XVI + 365 pp. , 1985 .
[6] Shuai Liu,et al. Improvement of Escape Time Algorithm by No-Escape-Point , 2011, J. Comput..
[7] Yuan-Yuan Sun,et al. QUATERNION M SET WITH NONE ZERO CRITICAL POINTS , 2009 .
[8] Miguel Romera,et al. Calculation of the Structure of a Shrub in the Mandelbrot Set , 2011 .
[9] Daochun Sun. On the inverse image set of rational functions , 2007 .
[10] Gao Hong-liang. Inverse Function Iterative Algorithm for the Julia Set , 2006 .
[11] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[12] Ioannis Andreadis,et al. On a topological closeness of perturbed Julia sets , 2010, Appl. Math. Comput..
[13] Zhengxuan Wang,et al. A Generalized Mandelbrot Set Based On Distance Ratio , 2006 .