Optimized Schwarz Methods for Maxwell's Equations

Over the last two decades, classical Schwarz methods have been extended to systems of hyperbolic partial differential equations, using characteristic transmission conditions, and it has been observed that the classical Schwarz method can be convergent even without overlap in certain cases. This is in strong contrast to the behavior of classical Schwarz methods applied to elliptic problems, for which overlap is essential for convergence. More recently, optimized Schwarz methods have been developed for elliptic partial differential equations. These methods use more effective transmission conditions between subdomains than the classical Dirichlet conditions, and optimized Schwarz methods can be used both with and without overlap for elliptic problems. We show here why the classical Schwarz method applied to both the time harmonic and time discretized Maxwell's equations converges without overlap: the method has the same convergence factor as a simple optimized Schwarz method for a scalar elliptic equation. Based on this insight, we develop an entire new hierarchy of optimized overlapping and nonoverlapping Schwarz methods for Maxwell's equations with greatly enhanced performance compared to the classical Schwarz method. We also derive for each algorithm asymptotic formulas for the optimized transmission conditions, which can easily be used in implementations of the algorithms for problems with variable coefficients. We illustrate our findings with numerical experiments.

[1]  Sylvie Benzoni-Gavage,et al.  Multi-dimensional hyperbolic partial differential equations , 2006 .

[2]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[3]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[4]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[5]  Stéphane Lanteri,et al.  Construction of interface conditions for solving the compressible Euler equations by non‐overlapping domain decomposition methods , 2002 .

[6]  Luca Gerardo-Giorda,et al.  New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..

[7]  Patrick Joly,et al.  A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations , 1997 .

[8]  Laurence Halpern,et al.  Méthodes de relaxation d’ondes pour l’équation de la chaleur en dimension 1 Optimized Schwarz Waveform Relaxation for the one-dimensional heat equation , 2008 .

[9]  Wei-Pai Tang,et al.  Generalized Schwarz Splittings , 1992, SIAM J. Sci. Comput..

[10]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[11]  Martin J. Gander,et al.  Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..

[12]  Thomas Hagstrom,et al.  RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS: A REVIEW OF ACCURATE TIME-DOMAIN , 2007 .

[13]  Frédéric Nataf,et al.  Méthode de décomposition de domaine pour l'équation d'advection-diffusion , 1991 .

[14]  Stéphane Lanteri,et al.  Convergence Analysis of a Schwarz Type Domain Decomposition Method for the Solution of the Euler Equations , 2000 .

[15]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[16]  Thomas Hagstrom,et al.  Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems , 1988 .

[17]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[18]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[19]  Martin J. Gander,et al.  Optimized Schwarz methods for Helmholtz Problems , 2001 .

[20]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[21]  Frédéric Nataf,et al.  FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .

[22]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[23]  Frédéric Nataf,et al.  Symmetrized Method with Optimized Second-Order Conditions for the Helmholtz Equation , 1998 .

[24]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[25]  Laurence Halpern,et al.  Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1 , 2003 .

[26]  Frédéric Nataf,et al.  The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..

[27]  Hans Triebel,et al.  BOUNDARY VALUE PROBLEMS FOR ELLIPTIC SYSTEMS By J. T. Wloka, B. Rowley and B. Lawruk: 641 pp., £60.00 (US$89.95), ISBN 0 521 43011 9 (Cambridge University Press, 1995). , 1997 .

[28]  R. Kleinman,et al.  Second International Conference on Mathematical and Numerical Aspects of Wave Propagation , 1993 .

[29]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[30]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[31]  Frédéric Nataf,et al.  Deriving a new domain decomposition method for the Stokes equations using the Smith factorization , 2009, Math. Comput..

[32]  Ezio Faccioli,et al.  Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations , 1996 .

[33]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collocation Approximations , 1990, SIAM J. Sci. Comput..

[34]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[35]  Ivan Sofronov,et al.  Non-reflecting Inflow and Outflow in a Wind Tunnel for Transonic Time-Accurate Simulation , 1998 .

[36]  O. Widlund Domain Decomposition Algorithms , 1993 .

[37]  F. Magoulès,et al.  An optimized Schwarz method with two‐sided Robin transmission conditions for the Helmholtz equation , 2007 .

[38]  Ulrich Langer,et al.  Domain decomposition methods in science and engineering XVII , 2008 .

[39]  Wei-Pai Tang,et al.  An Overdetermined Schwarz Alternating Method , 1996, SIAM J. Sci. Comput..

[40]  Martin J. Gander,et al.  Why can Classical Schwarz Methods Applied to Hyperbolic Systems Converge even Without Overlap , 2006 .

[41]  Philippe Chevalier Methodes numeriques pour les tubes hyperfrequences. Resolution par decomposition de domaine , 1998 .

[42]  Qingping Deng Timely Communicaton: An Analysis for a Nonoverlapping Domain Decomposition Iterative Procedure , 1997, SIAM J. Sci. Comput..

[43]  Jacques Periaux,et al.  On Domain Decomposition Methods , 1988 .

[44]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[45]  Andrea Toselli,et al.  Overlapping Schwarz methods for Maxwell's equations in three dimensions , 1997, Numerische Mathematik.

[46]  B. Després,et al.  Décomposition de domaine et problème de Helmholtz , 1990 .

[47]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .