Intrinsic Local Symmetries: A Computational Framework
暂无分享,去创建一个
[1] Alexander M. Bronstein,et al. Symmetries of non-rigid shapes , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[2] Kai Xu,et al. Partial intrinsic reflectional symmetry of 3D shapes , 2009, SIGGRAPH 2009.
[3] Alexander M. Bronstein,et al. Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..
[4] Alexander M. Bronstein,et al. Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.
[5] Ron Kimmel,et al. Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[6] Alexander M. Bronstein,et al. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes , 2010, CVPR 2011.
[7] Alexander M. Bronstein,et al. Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..
[8] Guillermo Sapiro,et al. A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.
[9] Leonidas J. Guibas,et al. On Discrete Killing Vector Fields and Patterns on Surfaces , 2010, Comput. Graph. Forum.
[10] J A Sethian,et al. Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[11] Leonidas J. Guibas,et al. Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.
[12] Hans-Peter Seidel,et al. Symmetry Detection Using Line Features , 2009 .
[13] KimmelRon,et al. Full and Partial Symmetries of Non-rigid Shapes , 2010 .
[14] Alexander M. Bronstein,et al. Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.
[15] S. Myers. Isometries of 2-Dimensional Riemannian Manifolds into Themselves. , 1936, Proceedings of the National Academy of Sciences of the United States of America.
[16] Changming Sun,et al. 3D Symmetry Detection Using The Extended Gaussian Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[17] Leonidas J. Guibas,et al. Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..
[18] R. Matzner. Almost symmetric spaces and gravitational radiation. , 1968 .
[19] Guillermo Sapiro,et al. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..