Intrinsic Local Symmetries: A Computational Framework

We present a computational framework for finding metric-preserving tangent vector fields on surfaces, also known as Killing Vector Fields. Flows of such vector fields define self-isometries of the surface, or in other words, symmetries. Our approach is based on general-purpose isometry-finding frameworks, and is shown to be robust to noise. In addition, we demonstrate symmetry recovery using non-Euclidean metrics.

[1]  Alexander M. Bronstein,et al.  Symmetries of non-rigid shapes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[2]  Kai Xu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, SIGGRAPH 2009.

[3]  Alexander M. Bronstein,et al.  Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..

[4]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[5]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Alexander M. Bronstein,et al.  Affine-invariant diffusion geometry for the analysis of deformable 3D shapes , 2010, CVPR 2011.

[7]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[8]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[9]  Leonidas J. Guibas,et al.  On Discrete Killing Vector Fields and Patterns on Surfaces , 2010, Comput. Graph. Forum.

[10]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[12]  Hans-Peter Seidel,et al.  Symmetry Detection Using Line Features , 2009 .

[13]  KimmelRon,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010 .

[14]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[15]  S. Myers Isometries of 2-Dimensional Riemannian Manifolds into Themselves. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Changming Sun,et al.  3D Symmetry Detection Using The Extended Gaussian Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[18]  R. Matzner Almost symmetric spaces and gravitational radiation. , 1968 .

[19]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..