Adversarial Text-to-Image Synthesis: A Review

[1]  Tianfu Wu,et al.  Learning Layout and Style Reconfigurable GANs for Controllable Image Synthesis , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Stefan Wermter,et al.  Semantic Object Accuracy for Generative Text-to-Image Synthesis , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Jing Yu Koh,et al.  Cross-Modal Contrastive Learning for Text-to-Image Generation , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  B. Ommer,et al.  Taming Transformers for High-Resolution Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Abhishek Kumar,et al.  Score-Based Generative Modeling through Stochastic Differential Equations , 2020, ICLR.

[6]  Honglak Lee,et al.  Text-to-Image Generation Grounded by Fine-Grained User Attention , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[7]  Teng Zhang,et al.  Faces \`a la Carte: Text-to-Face Generation via Attribute Disentanglement , 2020, 2006.07606.

[8]  Jason Baldridge,et al.  Crisscrossed Captions: Extended Intramodal and Intermodal Semantic Similarity Judgments for MS-COCO , 2020, EACL.

[9]  R Devon Hjelm,et al.  Object-Centric Image Generation from Layouts , 2020, AAAI.

[10]  Dietrich Klakow,et al.  Image Manipulation with Natural Language using Two-sidedAttentive Conditional Generative Adversarial Network , 2019, Neural Networks.

[11]  Dietrich Klakow,et al.  Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods , 2019, J. Artif. Intell. Res..

[12]  Yuxin Peng,et al.  Bridge-GAN: Interpretable Representation Learning for Text-to-Image Synthesis , 2020, IEEE Transactions on Circuits and Systems for Video Technology.

[13]  Andreas Dengel,et al.  Leveraging Visual Question Answering to Improve Text-to-Image Synthesis , 2020, LANTERN.

[14]  Wenjie Pei,et al.  CPGAN: Content-Parsing Generative Adversarial Networks for Text-to-Image Synthesis , 2020, ECCV.

[15]  Nicu Sebe,et al.  Describe What to Change: A Text-guided Unsupervised Image-to-image Translation Approach , 2020, ACM Multimedia.

[16]  David Bau,et al.  Rewriting a Deep Generative Model , 2020, ECCV.

[17]  Mark Chen,et al.  Generative Pretraining From Pixels , 2020, ICML.

[18]  Tao Wang,et al.  Attentive Generative Adversarial Network To Bridge Multi-Domain Gap For Image Synthesis , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[19]  Zhe Quan,et al.  Text to Image Synthesis With Bidirectional Generative Adversarial Network , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[20]  Xiaojie Wang,et al.  Image Synthesis from Locally Related Texts , 2020, ICMR.

[21]  Jun Cheng,et al.  RiFeGAN: Rich Feature Generation for Text-to-Image Synthesis From Prior Knowledge , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  B. Ommer,et al.  Network-to-Network Translation with Conditional Invertible Neural Networks , 2020, NeurIPS.

[23]  Songhe Feng,et al.  End-to-End Text-to-Image Synthesis with Spatial Constrains , 2020, ACM Trans. Intell. Syst. Technol..

[24]  Jihua Zhu,et al.  S2IGAN: Speech-to-Image Generation via Adversarial Learning , 2020, INTERSPEECH.

[25]  Maartje ter Hoeve,et al.  Conditional Image Generation and Manipulation for User-Specified Content , 2020, ArXiv.

[26]  Jonatas Wehrmann,et al.  Efficient Neural Architecture for Text-to-Image Synthesis , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[27]  Kyogu Lee,et al.  From Inference to Generation: End-to-end Fully Self-supervised Generation of Human Face from Speech , 2020, ICLR.

[28]  Baotian Hu,et al.  Text-Guided Neural Image Inpainting , 2020, ACM Multimedia.

[29]  Seong Joon Oh,et al.  Reliable Fidelity and Diversity Metrics for Generative Models , 2020, ICML.

[30]  Thomas Lukasiewicz,et al.  ManiGAN: Text-Guided Image Manipulation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Thomas Hofmann,et al.  Controlling Style and Semantics in Weakly-Supervised Image Generation , 2019, ECCV.

[32]  Jordi Pont-Tuset,et al.  Connecting Vision and Language with Localized Narratives , 2019, ECCV.

[33]  Xingquan Zhu,et al.  A survey and taxonomy of adversarial neural networks for text‐to‐image synthesis , 2019, WIREs Data Mining Knowl. Discov..

[34]  Akihiro Sugimoto,et al.  Visual-Relation Conscious Image Generation from Structured-Text , 2019, ECCV.

[35]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Zunlei Feng,et al.  Neural Style Transfer: A Review , 2017, IEEE Transactions on Visualization and Computer Graphics.

[37]  Xin Li,et al.  Semantics-Enhanced Adversarial Nets for Text-to-Image Synthesis , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[38]  Oron Ashual,et al.  Specifying Object Attributes and Relations in Interactive Scene Generation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Mohit Bansal,et al.  LXMERT: Learning Cross-Modality Encoder Representations from Transformers , 2019, EMNLP.

[40]  Wei Sun,et al.  Image Synthesis From Reconfigurable Layout and Style , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[41]  Thomas Fevens,et al.  Dual Adversarial Inference for Text-to-Image Synthesis , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[42]  Cho-Jui Hsieh,et al.  VisualBERT: A Simple and Performant Baseline for Vision and Language , 2019, ArXiv.

[43]  Stefan Lee,et al.  ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks , 2019, NeurIPS.

[44]  Rama Chellappa,et al.  Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis , 2019, IJCAI.

[45]  Heng Tao Shen,et al.  Perceptual Pyramid Adversarial Networks for Text-to-Image Synthesis , 2019, AAAI.

[46]  Bolei Zhou,et al.  Semantic photo manipulation with a generative image prior , 2019, ACM Trans. Graph..

[47]  Yang Song,et al.  Generative Modeling by Estimating Gradients of the Data Distribution , 2019, NeurIPS.

[48]  Graham W. Taylor,et al.  On the Evaluation of Conditional GANs , 2019, ArXiv.

[49]  Jeff Donahue,et al.  Large Scale Adversarial Representation Learning , 2019, NeurIPS.

[50]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[51]  James Glass,et al.  Learning Words by Drawing Images , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Suman V. Ravuri,et al.  Classification Accuracy Score for Conditional Generative Models , 2019, NeurIPS.

[53]  Xiaogang Wang,et al.  PasteGAN: A Semi-Parametric Method to Generate Image from Scene Graph , 2019, NeurIPS.

[54]  Minglun Gong,et al.  Hierarchically-Fused Generative Adversarial Network for Text to Realistic Image Synthesis , 2019, 2019 16th Conference on Computer and Robot Vision (CRV).

[55]  Jaakko Lehtinen,et al.  Improved Precision and Recall Metric for Assessing Generative Models , 2019, NeurIPS.

[56]  Melvin Johnson,et al.  Direct speech-to-speech translation with a sequence-to-sequence model , 2019, INTERSPEECH.

[57]  Augustus Odena,et al.  Open Questions about Generative Adversarial Networks , 2019, Distill.

[58]  Wei Chen,et al.  DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-To-Image Synthesis , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Nenghai Yu,et al.  Semantics Disentangling for Text-To-Image Generation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Michael S. Bernstein,et al.  HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models , 2019, NeurIPS.

[61]  Gaurav Mittal,et al.  Interactive Image Generation Using Scene Graphs , 2019, DGS@ICLR.

[62]  Jing Zhang,et al.  MirrorGAN: Learning Text-To-Image Generation by Redescription , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Lei Zhang,et al.  Object-Driven Text-To-Image Synthesis via Adversarial Training , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Ian Oppermann,et al.  Realistic Image Generation using Region-phrase Attention , 2019, ACML.

[65]  Luuk J. Spreeuwers,et al.  A Layer-Based Sequential Framework for Scene Generation with GANs , 2019, AAAI.

[66]  Stefan Wermter,et al.  Generating Multiple Objects at Spatially Distinct Locations , 2019, ICLR.

[67]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  H. T. Kung,et al.  Adversarial Learning of Semantic Relevance in Text to Image Synthesis , 2018, AAAI.

[69]  Bo Zhao,et al.  Image Generation From Layout , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Yoshua Bengio,et al.  Tell, Draw, and Repeat: Generating and Modifying Images Based on Continual Linguistic Instruction , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[71]  Md. Zakir Hossain,et al.  A Comprehensive Survey of Deep Learning for Image Captioning , 2018, ACM Comput. Surv..

[72]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[73]  Nal Kalchbrenner,et al.  Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling , 2018, ICLR.

[74]  Vineeth N. Balasubramanian,et al.  C4Synth: Cross-Caption Cycle-Consistent Text-to-Image Synthesis , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[75]  Vicente Ordonez,et al.  Text2Scene: Generating Compositional Scenes From Textual Descriptions , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[76]  Thomas S. Huang,et al.  Free-Form Image Inpainting With Gated Convolution , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[77]  Ali Borji,et al.  Pros and Cons of GAN Evaluation Measures , 2018, Comput. Vis. Image Underst..

[78]  Yixin Chen,et al.  SHOW , 2018, Silent Cinema.

[79]  Xiaogang Wang,et al.  StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[81]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[82]  Dacheng Tao,et al.  Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge , 2019, NeurIPS.

[83]  Yadan Luo,et al.  Cycle-Consistent Diverse Image Synthesis from Natural Language , 2019, 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[84]  Yu Cheng,et al.  Sequential Attention GAN for Interactive Image Editing via Dialogue , 2018, ArXiv.

[85]  Seonghyeon Nam,et al.  Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language , 2018, NeurIPS.

[86]  Andreas E. Savakis,et al.  Semantically Invariant Text-to-Image Generation , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[87]  Huchuan Lu,et al.  Deep Cross-Modal Projection Learning for Image-Text Matching , 2018, ECCV.

[88]  Yuxin Peng,et al.  Stacking VAE and GAN for Context-aware Text-to-Image Generation , 2018, 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM).

[89]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[90]  Radu Soricut,et al.  Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning , 2018, ACL.

[91]  Olivier Bachem,et al.  Assessing Generative Models via Precision and Recall , 2018, NeurIPS.

[92]  Li Fei-Fei,et al.  Image Generation from Scene Graphs , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[93]  Xiaogang Wang,et al.  Diversity Regularized Spatiotemporal Attention for Video-Based Person Re-identification , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[94]  Yoshua Bengio,et al.  Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes , 2018, Neural Computation.

[95]  Hayit Greenspan,et al.  GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification , 2018, Neurocomputing.

[96]  Lin Yang,et al.  Photographic Text-to-Image Synthesis with a Hierarchically-Nested Adversarial Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[97]  Dustin Tran,et al.  Image Transformer , 2018, ICML.

[98]  Yoshua Bengio,et al.  ChatPainter: Improving Text to Image Generation using Dialogue , 2018, ICLR.

[99]  Rama Chellappa,et al.  Semi-supervised FusedGAN for Conditional Image Generation , 2018, ECCV.

[100]  Seunghoon Hong,et al.  Inferring Semantic Layout for Hierarchical Text-to-Image Synthesis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[101]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[102]  Rishi Sharma,et al.  A Note on the Inception Score , 2018, ArXiv.

[103]  Arthur Gretton,et al.  Demystifying MMD GANs , 2018, ICLR.

[104]  Zhe Gan,et al.  AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[105]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[106]  Tom White,et al.  Generative Adversarial Networks: An Overview , 2017, IEEE Signal Processing Magazine.

[107]  Yitong Li,et al.  Video Generation From Text , 2017, AAAI.

[108]  Harshad Rai,et al.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , 2018 .

[109]  Kun Xu,et al.  A survey of image synthesis and editing with generative adversarial networks , 2017 .

[110]  Andreas Dengel,et al.  Image Captioning in the Wild: How People Caption Images on Flickr , 2017, MUSA2@MM.

[111]  Vladlen Koltun,et al.  Photographic Image Synthesis with Cascaded Refinement Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[112]  Yike Guo,et al.  Semantic Image Synthesis via Adversarial Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[113]  David J. Fleet,et al.  VSE++: Improved Visual-Semantic Embeddings , 2017, ArXiv.

[114]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[115]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[116]  Matthieu Cord,et al.  MUTAN: Multimodal Tucker Fusion for Visual Question Answering , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[117]  Narendra Ahuja,et al.  Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[119]  Marcus Liwicki,et al.  TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network , 2017, ArXiv.

[120]  Bowen Zhou,et al.  A Structured Self-attentive Sentence Embedding , 2017, ICLR.

[121]  Dimitris N. Metaxas,et al.  StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[122]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[123]  Yash Goyal,et al.  Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering , 2016, International Journal of Computer Vision.

[124]  Yoshua Bengio,et al.  Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[125]  José M. F. Moura,et al.  Visual Dialog , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[126]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Jonathon Shlens,et al.  Conditional Image Synthesis with Auxiliary Classifier GANs , 2016, ICML.

[128]  Jonathon Shlens,et al.  A Learned Representation For Artistic Style , 2016, ICLR.

[129]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[130]  Minh N. Do,et al.  Semantic Image Inpainting with Deep Generative Models , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[131]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.

[132]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[133]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[134]  Fei-Fei Li,et al.  Deep visual-semantic alignments for generating image descriptions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[135]  Bernt Schiele,et al.  Learning What and Where to Draw , 2016, NIPS.

[136]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[137]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[138]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[139]  Jason Weston,et al.  Key-Value Memory Networks for Directly Reading Documents , 2016, EMNLP.

[140]  Bernt Schiele,et al.  Generative Adversarial Text to Image Synthesis , 2016, ICML.

[141]  Bernt Schiele,et al.  Learning Deep Representations of Fine-Grained Visual Descriptions , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[142]  Michael S. Bernstein,et al.  Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations , 2016, International Journal of Computer Vision.

[143]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[144]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[145]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[147]  Christopher D. Manning,et al.  Effective Approaches to Attention-based Neural Machine Translation , 2015, EMNLP.

[148]  Sanja Fidler,et al.  Skip-Thought Vectors , 2015, NIPS.

[149]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[150]  Michael S. Bernstein,et al.  Image retrieval using scene graphs , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[151]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[152]  Jason Weston,et al.  End-To-End Memory Networks , 2015, NIPS.

[153]  Christopher D. Manning,et al.  Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.

[154]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[155]  C. Lawrence Zitnick,et al.  CIDEr: Consensus-based image description evaluation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[156]  Samy Bengio,et al.  Show and tell: A neural image caption generator , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[157]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[158]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[159]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[160]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[161]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[162]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[163]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[164]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[165]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[166]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[167]  Marc Alexa,et al.  How do humans sketch objects? , 2012, ACM Trans. Graph..

[168]  Pietro Perona,et al.  The Caltech-UCSD Birds-200-2011 Dataset , 2011 .

[169]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[170]  Andrew Zisserman,et al.  Automated Flower Classification over a Large Number of Classes , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[171]  Alon Lavie,et al.  METEOR: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human Judgments , 2007, WMT@ACL.

[172]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[173]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[174]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[175]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[176]  S. Kosslyn,et al.  Neural foundations of imagery , 2001, Nature Reviews Neuroscience.

[177]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..

[178]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[179]  Zellig S. Harris,et al.  Distributional Structure , 1954 .