Hierarchical Convex Optimization With Primal-Dual Splitting

This paper addresses the selection of a desirable solution among all the solutions of a convex optimization problem (referred to as the first-stage problem) mainly for inverse problems in signal processing. This is realized in the framework of hierarchical convex optimization, i.e., minimizing another convex function over the solution set of the first-stage problem. Hierarchical convex optimization is an ideal strategy when the first-stage problem has infinitely many solutions because of the non-strict convexity of its objective function, which could arise in various scenarios, e.g., convex feasibility problems. To this end, first, the fixed point set characterization behind a primal-dual splitting type method is incorporated into the framework of hierarchical convex optimization, which enables the framework to cover a broad class of first-stage problem formulations. Then, a pair of efficient algorithmic solutions to the hierarchical convex optimization problem, as certain realizations of the hybrid steepest descent method, are provided with guaranteed convergence. We also present a specialized form of the proposed framework to focus on a typical scenario of inverse problems, and show its application to signal interpolation.

[1]  A. Goldstein Convex programming in Hilbert space , 1964 .

[2]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[3]  Laurent Condat,et al.  A Generic Proximal Algorithm for Convex Optimization—Application to Total Variation Minimization , 2014, IEEE Signal Processing Letters.

[4]  Amir Beck,et al.  A first order method for finding minimal norm-like solutions of convex optimization problems , 2014, Math. Program..

[5]  Isao Yamada,et al.  Nonstrictly Convex Minimization over the Bounded Fixed Point Set of a Nonexpansive Mapping , 2003 .

[6]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[7]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[8]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[9]  Shunsuke Ono,et al.  Poisson image restoration with likelihood constraint via hybrid steepest descent method , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[10]  Nelly Pustelnik,et al.  Epigraphical Projection and Proximal Tools for Solving Constrained Convex Optimization Problems: Part I , 2012, ArXiv.

[11]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[12]  Paul-Emile Maingé,et al.  Extension of the Hybrid Steepest Descent Method to a Class of Variational Inequalities and Fixed Point Problems with Nonself-Mappings , 2008 .

[13]  Patrick L. Combettes,et al.  Inconsistent signal feasibility problems: least-squares solutions in a product space , 1994, IEEE Trans. Signal Process..

[14]  Isao Yamada,et al.  Minimizing the Moreau Envelope of Nonsmooth Convex Functions over the Fixed Point Set of Certain Quasi-Nonexpansive Mappings , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[15]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[16]  C. W. Groetsch,et al.  A Note on Segmenting Mann Iterates , 1972 .

[17]  Patrick L. Combettes,et al.  Hard-constrained inconsistent signal feasibility problems , 1999, IEEE Trans. Signal Process..

[18]  Gerlind Plonka-Hoch,et al.  Curvelet-Wavelet Regularized Split Bregman Iteration for Compressed Sensing , 2011, Int. J. Wavelets Multiresolution Inf. Process..

[19]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[20]  Isao Yamada,et al.  Robust Wideband Beamforming by the Hybrid Steepest Descent Method , 2007, IEEE Transactions on Signal Processing.

[21]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[22]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[23]  Lixin Shen,et al.  Proximity algorithms for the L1/TV image denoising model , 2011, Advances in Computational Mathematics.

[24]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[25]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[26]  Wataru Takahashi,et al.  STRONG CONVERGENCE THEOREMS BY A HYBRID STEEPEST DESCENT METHOD FOR COUNTABLE NONEXPANSIVE MAPPINGS IN HILBERT SPACES , 2009 .

[27]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[28]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[29]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[30]  I. Yamada The Hybrid Steepest Descent Method for the Variational Inequality Problem over the Intersection of Fixed Point Sets of Nonexpansive Mappings , 2001 .

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  Ran Davidi,et al.  Superiorization: An optimization heuristic for medical physics , 2012, Medical physics.

[33]  Sergios Theodoridis,et al.  Adaptive Learning in a World of Projections , 2011, IEEE Signal Processing Magazine.

[34]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[35]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[36]  Hong-Kun Xu,et al.  Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities , 2003 .

[37]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[38]  Shunsuke Ono,et al.  Cartoon-Texture Image Decomposition Using Blockwise Low-Rank Texture Characterization , 2014, IEEE Transactions on Image Processing.

[39]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[40]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[41]  Shunsuke Ono,et al.  A sparse system identification by using adaptively-weighted total variation via a primal-dual splitting approach , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  Guy Pierra,et al.  Decomposition through formalization in a product space , 1984, Math. Program..

[43]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.

[44]  Masahiro Yukawa,et al.  Online model selection and learning by multikernel adaptive filtering , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[45]  P. Tseng Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .

[46]  I. Yamada,et al.  NON-STRICTLY CONVEX MINIMIZATION OVER THE FIXED POINT SET OF AN ASYMPTOTICALLY SHRINKING NONEXPANSIVE MAPPING , 2002 .

[47]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[48]  Nelly Pustelnik,et al.  A Nonlocal Structure Tensor-Based Approach for Multicomponent Image Recovery Problems , 2014, IEEE Transactions on Image Processing.

[49]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[50]  Shunsuke Ono,et al.  Image Recovery by Decomposition with Component-Wise Regularization , 2012, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[51]  Shunsuke Ono,et al.  A Convex Regularizer for Reducing Color Artifact in Color Image Recovery , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..

[53]  J. Baillon,et al.  Quelques propriétés des opérateurs angle-bornés etn-cycliquement monotones , 1977 .

[54]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[55]  Irene Fonseca,et al.  A Higher Order Model for Image Restoration: The One-Dimensional Case , 2007, SIAM J. Math. Anal..

[56]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[57]  D. Butnariu,et al.  Stable Convergence Behavior Under Summable Perturbations of a Class of Projection Methods for Convex Feasibility and Optimization Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[58]  C. E. Chidume,et al.  Geometric Properties of Banach Spaces and Nonlinear Iterations , 2009 .

[59]  Heinz H. Bauschke,et al.  Fixed-Point Algorithms for Inverse Problems in Science and Engineering , 2011, Springer Optimization and Its Applications.

[60]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[61]  Heinz H. Bauschke The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space , 1996 .

[62]  Laurent Condat,et al.  Recovery of nonuniformdirac pulses from noisy linear measurements , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[63]  S. Singh Nonlinear functional analysis and its applications , 1986 .

[64]  Nelly Pustelnik,et al.  Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization , 2009, IEEE Transactions on Image Processing.

[65]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[66]  Shunsuke Ono,et al.  Second-order total Generalized Variation constraint , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[67]  G. Herman,et al.  Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction , 2012, Inverse problems.

[68]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[69]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[70]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[71]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[72]  Shunsuke Ono,et al.  Decorrelated Vectorial Total Variation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[74]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[75]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[76]  Isao Yamada,et al.  Parallel algorithms for variational inequalities over the Cartesian product of the intersections of the fixed point sets of nonexpansive mappings , 2008, J. Approx. Theory.

[77]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[78]  Laurent Condat,et al.  A Direct Algorithm for 1-D Total Variation Denoising , 2013, IEEE Signal Processing Letters.

[79]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[80]  Patrick L. Combettes,et al.  A block-iterative surrogate constraint splitting method for quadratic signal recovery , 2003, IEEE Trans. Signal Process..

[81]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[82]  Patrick L. Combettes,et al.  Strong Convergence of Block-Iterative Outer Approximation Methods for Convex Optimization , 2000, SIAM J. Control. Optim..

[83]  OsherStanley,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[84]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[85]  P. Lions Approximation de Points Fixes de Contractions , 1977 .

[86]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[87]  Convex Optimization in Signal Processing and Communications , 2010 .

[88]  I. Yamada A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems , 2002 .