Systematic effects in LOFAR data: A unified calibration strategy
暂无分享,去创建一个
G. Heald | J. Sabater | D. Rafferty | L. K. Morabito | M. Mevius | J. R. Callingham | A. R. Offringa | T. Shimwell | R. Oonk | T. J. Dijkema | H. T. Intema | J. Callingham | A. Offringa | A. Shulevski | G. Heald | E. Orr̀u | D. Rafferty | H. Röttgering | T. Shimwell | M. Brüggen | W. Williams | J. Sabater | M. Mevius | L. Morabito | A. Drabent | F. de Gasperin | R. V. van Weeren | H. Intema | F. de Gasperin | A. Drabent | R. van Weeren | M. Brüggen | K. L. Emig | E. Orrù | H. Röttgering | A. Shulevski | W. Williams | K. Emig | R. Oonk | E. Orrú
[1] R. Jones. A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .
[2] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[3] Richard L. White,et al. The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .
[4] R. Sault,et al. Understanding radio polarimetry. I. Mathematical foundations , 1996 .
[5] H. Rottgering,et al. The Westerbork Northern Sky Survey (WENSS) I. A 570 square degree Mini-Survey around the North Ecliptic Pole ? , 1997 .
[6] M. I. Large,et al. SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science Goals, Survey Design, and Instrumentation , 1999 .
[7] J. Hamaker. Understanding radio polarimetry. IV. The full-coherency analogue of scalar self-calibration: Self-al , 2000 .
[8] Per Enge,et al. Bounding higher‐order ionosphere errors for the dual‐frequency GPS user , 2006 .
[9] S. Markoff,et al. LOFAR - low frequency array , 2006 .
[10] Roger J. Cappallo,et al. Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.
[11] L. Miller,et al. A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.
[12] Mohammed Mainul Hoque,et al. Estimate of higher order ionospheric errors in GNSS positioning , 2008 .
[13] H. Rottgering,et al. Ionospheric calibration of low frequency radio interferometric observations using the peeling scheme I. Method description and first results , 2009, 0904.3975.
[14] France,et al. 325-MHz Observations of the ELAIS-N1 Field , 2008, 0812.0813.
[15] India.,et al. Deep GMRT 150-MHz observations of the LBDS-Lynx region: ultrasteep spectrum radio sources , 2010, Monthly Notices of the Royal Astronomical Society.
[16] D. J. Saikia,et al. EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.
[17] O. Smirnov. Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.
[18] Oleg M. Smirnov,et al. Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects , 2011, 1101.1765.
[19] H. Rottgering,et al. Deep low-frequency radio observations of the NOAO Boötes field - I. Data reduction and catalog construction , 2011, 1109.5906.
[20] G. Bruce Berriman,et al. Astrophysics Source Code Library , 2012, ArXiv.
[21] J. Roerdink,et al. A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.
[22] A. Scaife,et al. A broad-band flux scale for low-frequency radio telescopes , 2012, 1203.0977.
[23] H. Rottgering,et al. T-RaMiSu: the Two-meter Radio Mini Survey - I. The Boötes Field , 2012, 1211.1189.
[24] T. Murphy,et al. wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.
[25] A. J. van der Horst,et al. LOFAR LOW-BAND ANTENNA OBSERVATIONS OF THE 3C 295 AND BOÖTES FIELDS: SOURCE COUNTS AND ULTRA-STEEP SPECTRUM SOURCES , 2014, 1409.5437.
[26] M. C. Toribio,et al. DISCOVERY OF CARBON RADIO RECOMBINATION LINES IN M82 , 2014, Proceedings of the International Astronomical Union.
[27] Stefan J. Wijnholds,et al. Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications , 2014, 1410.2101.
[28] S. Velzen,et al. The Very Large Array Low-frequency Sky Survey Redux (VLSSr) , 2014, 1404.0694.
[29] H. Rottgering,et al. LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift , 2015, 1508.07239.
[30] G. van Diepen,et al. Casacore Table Data System and its use in the MeasurementSet , 2015, Astron. Comput..
[31] J. V. D. Gronde. Beyond scalar morphology , 2015 .
[32] S. Markoff,et al. The LOFAR Multifrequency Snapshot Sky Survey (MSSS) - I. Survey description and first results , 2015 .
[33] S. Kazemi,et al. Probing ionospheric structures using the LOFAR radio telescope , 2016, 1606.04683.
[34] R. Morganti,et al. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics. , 2016, Monthly notices of the Royal Astronomical Society.
[35] T. J. Dijkema,et al. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release , 2016, 1611.02700.
[36] T. Ensslin,et al. LOFAR 150-MHz observations of the Boötes field: catalogue and source counts , 2016, 1605.01531.
[37] T. J. Dijkema,et al. LOFAR FACET CALIBRATION , 2016, 1601.05422.
[38] D. Frail,et al. The GMRT 150 MHz all-sky radio survey - First alternative data release TGSS ADR1 , 2016, 1603.04368.
[39] J. Schaye,et al. Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR , 2017, 1702.08679.
[40] T. Ensslin,et al. Gentle reenergization of electrons in merging galaxy clusters , 2017, Science Advances.
[41] L. Bester,et al. Faceting for direction-dependent spectral deconvolution , 2017, 1712.02078.
[42] Christopher L. Williams,et al. GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue , 2016, 1610.08318.
[43] H. Rottgering,et al. Deep LOFAR observations of the merging galaxy cluster CIZA J2242.8+5301 , 2017, 1706.09903.
[44] D. Frail,et al. A radio spectral index map and catalogue at 147-1400 MHz covering 80 per cent of the sky , 2017, 1711.11367.
[45] D. A. Rafferty,et al. The effect of the ionosphere on ultra-low-frequency radio-interferometric observations , 2018, Astronomy & Astrophysics.
[46] M. Magliocchetti,et al. Discovery of a radio galaxy at z = 5.72 , 2018, Monthly Notices of the Royal Astronomical Society.
[47] G. Brunetti,et al. The LOFAR Two-metre Sky Survey IV. First Data Release: Photometric redshifts and rest-frame magnitudes , 2018, 1811.07928.
[48] D. Smith,et al. The LoTSS view of radio AGN in the local Universe , 2018, Astronomy & Astrophysics.
[49] M. C. Toribio,et al. The first detection of radio recombination lines at cosmological distances , 2018, Astronomy & Astrophysics.