Systematic effects in LOFAR data: A unified calibration strategy

Context. New generation low-frequency telescopes are exploring a new parameter space in terms of depth and resolution. The data taken with these interferometers, for example with the LOw Frequency ARray (LOFAR), are often calibrated in a low signal-to-noise ratio regime and the removal of critical systematic effects is challenging. The process requires an understanding of their origin and properties. Aim. In this paper we describe the major systematic effects inherent to next generation low-frequency telescopes, such as LOFAR. With this knowledge, we introduce a data processing pipeline that is able to isolate and correct these systematic effects. The pipeline will be used to calibrate calibrator observations as the first step of a full data reduction process. Methods. We processed two LOFAR observations of the calibrator 3C 196: the first using the Low Band Antenna (LBA) system at 42–66 MHz and the second using the High Band Antenna (HBA) system at 115–189 MHz. Results. We were able to isolate and correct for the effects of clock drift, polarisation misalignment, ionospheric delay, Faraday rotation, ionospheric scintillation, beam shape, and bandpass. The designed calibration strategy produced the deepest image to date at 54 MHz. The image has been used to confirm that the spectral energy distribution of the average radio source population tends to flatten at low frequencies. Conclusions. We prove that LOFAR systematic effects can be described by a relatively small number of parameters. Furthermore, the identification of these parameters is fundamental to reducing the degrees of freedom when the calibration is carried out on fields that are not dominated by a strong calibrator.

[1]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[2]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[3]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[4]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[5]  H. Rottgering,et al.  The Westerbork Northern Sky Survey (WENSS) I. A 570 square degree Mini-Survey around the North Ecliptic Pole ? , 1997 .

[6]  M. I. Large,et al.  SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science Goals, Survey Design, and Instrumentation , 1999 .

[7]  J. Hamaker Understanding radio polarimetry. IV. The full-coherency analogue of scalar self-calibration: Self-al , 2000 .

[8]  Per Enge,et al.  Bounding higher‐order ionosphere errors for the dual‐frequency GPS user , 2006 .

[9]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[10]  Roger J. Cappallo,et al.  Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.

[11]  L. Miller,et al.  A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.

[12]  Mohammed Mainul Hoque,et al.  Estimate of higher order ionospheric errors in GNSS positioning , 2008 .

[13]  H. Rottgering,et al.  Ionospheric calibration of low frequency radio interferometric observations using the peeling scheme I. Method description and first results , 2009, 0904.3975.

[14]  France,et al.  325-MHz Observations of the ELAIS-N1 Field , 2008, 0812.0813.

[15]  India.,et al.  Deep GMRT 150-MHz observations of the LBDS-Lynx region: ultrasteep spectrum radio sources , 2010, Monthly Notices of the Royal Astronomical Society.

[16]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[17]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[18]  Oleg M. Smirnov,et al.  Revisiting the radio interferometer measurement equation. II. Calibration and direction-dependent effects , 2011, 1101.1765.

[19]  H. Rottgering,et al.  Deep low-frequency radio observations of the NOAO Boötes field - I. Data reduction and catalog construction , 2011, 1109.5906.

[20]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[21]  J. Roerdink,et al.  A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.

[22]  A. Scaife,et al.  A broad-band flux scale for low-frequency radio telescopes , 2012, 1203.0977.

[23]  H. Rottgering,et al.  T-RaMiSu: the Two-meter Radio Mini Survey - I. The Boötes Field , 2012, 1211.1189.

[24]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[25]  A. J. van der Horst,et al.  LOFAR LOW-BAND ANTENNA OBSERVATIONS OF THE 3C 295 AND BOÖTES FIELDS: SOURCE COUNTS AND ULTRA-STEEP SPECTRUM SOURCES , 2014, 1409.5437.

[26]  M. C. Toribio,et al.  DISCOVERY OF CARBON RADIO RECOMBINATION LINES IN M82 , 2014, Proceedings of the International Astronomical Union.

[27]  Stefan J. Wijnholds,et al.  Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications , 2014, 1410.2101.

[28]  S. Velzen,et al.  The Very Large Array Low-frequency Sky Survey Redux (VLSSr) , 2014, 1404.0694.

[29]  H. Rottgering,et al.  LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift , 2015, 1508.07239.

[30]  G. van Diepen,et al.  Casacore Table Data System and its use in the MeasurementSet , 2015, Astron. Comput..

[31]  J. V. D. Gronde Beyond scalar morphology , 2015 .

[32]  S. Markoff,et al.  The LOFAR Multifrequency Snapshot Sky Survey (MSSS) - I. Survey description and first results , 2015 .

[33]  S. Kazemi,et al.  Probing ionospheric structures using the LOFAR radio telescope , 2016, 1606.04683.

[34]  R. Morganti,et al.  FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics. , 2016, Monthly notices of the Royal Astronomical Society.

[35]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release , 2016, 1611.02700.

[36]  T. Ensslin,et al.  LOFAR 150-MHz observations of the Boötes field: catalogue and source counts , 2016, 1605.01531.

[37]  T. J. Dijkema,et al.  LOFAR FACET CALIBRATION , 2016, 1601.05422.

[38]  D. Frail,et al.  The GMRT 150 MHz all-sky radio survey - First alternative data release TGSS ADR1 , 2016, 1603.04368.

[39]  J. Schaye,et al.  Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR , 2017, 1702.08679.

[40]  T. Ensslin,et al.  Gentle reenergization of electrons in merging galaxy clusters , 2017, Science Advances.

[41]  L. Bester,et al.  Faceting for direction-dependent spectral deconvolution , 2017, 1712.02078.

[42]  Christopher L. Williams,et al.  GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue , 2016, 1610.08318.

[43]  H. Rottgering,et al.  Deep LOFAR observations of the merging galaxy cluster CIZA J2242.8+5301 , 2017, 1706.09903.

[44]  D. Frail,et al.  A radio spectral index map and catalogue at 147-1400 MHz covering 80 per cent of the sky , 2017, 1711.11367.

[45]  D. A. Rafferty,et al.  The effect of the ionosphere on ultra-low-frequency radio-interferometric observations , 2018, Astronomy & Astrophysics.

[46]  M. Magliocchetti,et al.  Discovery of a radio galaxy at z = 5.72 , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  G. Brunetti,et al.  The LOFAR Two-metre Sky Survey IV. First Data Release: Photometric redshifts and rest-frame magnitudes , 2018, 1811.07928.

[48]  D. Smith,et al.  The LoTSS view of radio AGN in the local Universe , 2018, Astronomy & Astrophysics.

[49]  M. C. Toribio,et al.  The first detection of radio recombination lines at cosmological distances , 2018, Astronomy & Astrophysics.