Multi-symplectic scheme for the coupled Schrödinger—Boussinesq equations

In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrodinger—Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well.

[1]  Jiaxiang Cai,et al.  Explicit Multisymplectic Fourier Pseudospectral Scheme for the Klein—Gordon—Zakharov Equations , 2012 .

[2]  Wang Yu-Shun,et al.  Two New Simple Multi-Symplectic Schemes for the Nonlinear Schrödinger Equation , 2008 .

[3]  N. N. Rao Coupled scalar field equations for nonlinear wave modulations in dispersive media , 1996 .

[4]  Dongmei Bai,et al.  The time-splitting Fourier spectral method for the coupled Schrödinger-Boussinesq equations , 2012 .

[5]  Song Song-he,et al.  Explicit multi-symplectic method for the Zakharov—Kuznetsov equation , 2012 .

[6]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[7]  M Panigrahy,et al.  Soliton solutions of a coupled field using the mixing exponential method , 1999 .

[8]  Jian Wang,et al.  Solitary wave propagation and interactions for the Klein–Gordon–Zakharov equations in plasma physics , 2009 .

[9]  Junkichi Satsuma,et al.  Soliton Solutions in a Diatomic Lattice System , 1979 .

[10]  Lv Zhong-Quan,et al.  A New Multi-Symplectic Integration Method for the Nonlinear Schrödinger Equation , 2013 .

[11]  Xin Xinquan,et al.  Transformation of Sign of Nonlinear Refraction between Mo(W)/S/Cu Planar Metal Clusters , 2008 .

[12]  Ke Wang,et al.  Corrigendum to “Global asymptotic stability of a stochastic Lotka–Volterra model with infinite delays” [Commun Nonlinear Sci Numer Simulat 17 (2012) 3115–3123] , 2012 .

[13]  Lan Wang,et al.  Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term , 2009, J. Comput. Appl. Math..

[14]  Chun Li,et al.  Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients , 2007, J. Comput. Phys..

[15]  Yifa Tang,et al.  Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .

[16]  V. G. Makhankov,et al.  Dynamics of classical solitons (in non-integrable systems) , 1978 .

[17]  Jialin Hong,et al.  Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term , 2009 .

[18]  Luming Zhang,et al.  The quadratic B-spline finite-element method for the coupled Schrödinger–Boussinesq equations , 2011, Int. J. Comput. Math..

[19]  Wenbin Guo,et al.  Criteria of existence of Hall subgroups in non-soluble finite groups , 2010 .

[20]  Luming Zhang,et al.  Numerical analysis for a conservative difference scheme to solve the Schrödinger-Boussinesq equation , 2011, J. Comput. Appl. Math..

[21]  Wang Jian Multisymplectic Integrator of the Zakharov System , 2008 .

[22]  V. G. Makhankov,et al.  On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying boussinesq's equation , 1974 .