Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila

In Drosophila, Piwi proteins associate with Piwi-interacting RNAs (piRNAs) and protect the germline genome by silencing mobile genetic elements. This defense system acts in germline and gonadal somatic tissue to preserve germline development. Genetic control for these silencing pathways varies greatly between tissues of the gonad. Here, we identified Vreteno (Vret), a novel gonad-specific protein essential for germline development. Vret is required for piRNA-based transposon regulation in both germline and somatic gonadal tissues. We show that Vret, which contains Tudor domains, associates physically with Piwi and Aubergine (Aub), stabilizing these proteins via a gonad-specific mechanism that is absent in other fly tissues. In the absence of vret, Piwi-bound piRNAs are lost without changes in piRNA precursor transcript production, supporting a role for Vret in primary piRNA biogenesis. In the germline, piRNAs can engage in an Aub- and Argonaute 3 (AGO3)-dependent amplification in the absence of Vret, suggesting that Vret function can distinguish between primary piRNAs loaded into Piwi-Aub complexes and piRNAs engaged in the amplification cycle. We propose that Vret plays an essential role in transposon regulation at an early stage of primary piRNA processing.

[1]  Caifu Chen,et al.  Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. , 2010, Genes & development.

[2]  Kuniaki Saito,et al.  Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. , 2010, Genes & development.

[3]  R. Sachidanandam,et al.  An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila , 2010, The EMBO journal.

[4]  R. Lehmann,et al.  Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. , 2010, Genes & development.

[5]  M. Siomi,et al.  How does the royal family of Tudor rule the PIWI-interacting RNA pathway? , 2010, Genes & development.

[6]  T. Kodama,et al.  Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines , 2009, The EMBO journal.

[7]  K. Asai,et al.  A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila , 2009, Nature.

[8]  Z. Weng,et al.  The Drosophila HP1 Homolog Rhino Is Required for Transposon Silencing and piRNA Production by Dual-Strand Clusters , 2009, Cell.

[9]  R. Sachidanandam,et al.  Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. , 2009, Genes & development.

[10]  R. Lehmann,et al.  Altered dynein-dependent transport in piRNA pathway mutants , 2009, Proceedings of the National Academy of Sciences.

[11]  Thomas Franz,et al.  Loss of the Mili-interacting Tudor domain–containing protein-1 activates transposons and alters the Mili-associated small RNA profile , 2009, Nature Structural &Molecular Biology.

[12]  Julius Brennecke,et al.  Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary , 2009, Cell.

[13]  Z. Weng,et al.  Collapse of Germline piRNAs in the Absence of Argonaute3 Reveals Somatic piRNAs in Flies , 2009, Cell.

[14]  Haifan Lin,et al.  Mili Interacts with Tudor Domain-Containing Protein 1 in Regulating Spermatogenesis , 2009, Current Biology.

[15]  M. Sattler,et al.  Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. , 2009, Journal of molecular biology.

[16]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[17]  R. Sachidanandam,et al.  An Epigenetic Role for Maternally Inherited piRNAs in Transposon Silencing , 2008, Science.

[18]  N. Perrimon,et al.  An endogenous small interfering RNA pathway in Drosophila , 2008, Nature.

[19]  Sudha Balla,et al.  Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster , 2008, Nature Structural &Molecular Biology.

[20]  Z. Weng,et al.  Endogenous siRNAs Derived from Transposons and mRNAs in Drosophila Somatic Cells , 2008, Science.

[21]  Sean J. Morrison,et al.  Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life , 2008, Cell.

[22]  N. Tanner,et al.  Single-molecule studies of fork dynamics in Escherichia coli DNA replication , 2008, Nature Structural &Molecular Biology.

[23]  O. Silvennoinen,et al.  The multifunctional human p100 protein 'hooks' methylated ligands , 2007, Nature Structural &Molecular Biology.

[24]  T. Schüpbach,et al.  zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. , 2007, Developmental cell.

[25]  T. Kai,et al.  Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[26]  Eugene Berezikov,et al.  A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish , 2007, Cell.

[27]  T. Schüpbach,et al.  cutoff and aubergine Mutations Result in Retrotransposon Upregulation and Checkpoint Activation in Drosophila , 2007, Current Biology.

[28]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[29]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[30]  Alain Bucheton,et al.  A Novel Repeat-Associated Small Interfering RNA-Mediated Silencing Pathway Downregulates Complementary Sense gypsy Transcripts in Somatic Cells of the Drosophila Ovary , 2006, Journal of Virology.

[31]  N. Lau,et al.  Characterization of the piRNA Complex from Rat Testes , 2006, Science.

[32]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[33]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[34]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[35]  Jean-Yves Roignant,et al.  The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway. , 2006, Genes & development.

[36]  A. Spradling,et al.  The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. , 2005, Developmental cell.

[37]  R. Lehmann,et al.  Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate , 2004, Nature Cell Biology.

[38]  Jing Wu,et al.  The Drosophila SDE3 Homolog armitage Is Required for oskar mRNA Silencing and Embryonic Axis Specification , 2004, Cell.

[39]  A. Pélisson,et al.  Evidence for a piwi-Dependent RNA Silencing of the gypsy Endogenous Retrovirus by the Drosophila melanogaster flamenco Gene , 2004, Genetics.

[40]  R. Lehmann,et al.  Germ line stem cell differentiation in Drosophila requires gap junctions and proceeds via an intermediate state , 2003, Development.

[41]  B. Dastugue,et al.  COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. , 2003, Genetics.

[42]  Sebastian Maurer-Stroh,et al.  The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. , 2003, Trends in biochemical sciences.

[43]  Ting Xie,et al.  Germline Stem Cells Anchored by Adherens Junctions in the Drosophila Ovary Niches , 2002, Science.

[44]  P. Macdonald,et al.  Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. , 2001, Development.

[45]  D. Kalderon,et al.  Hedgehog acts as a somatic stem cell factor in the Drosophila ovary , 2001, Nature.

[46]  Haifan Lin,et al.  piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. , 2000, Development.

[47]  T. Schüpbach,et al.  Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis , 1999, Nature Cell Biology.

[48]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[49]  P. Rørth Gal4 in the Drosophila female germline , 1998, Mechanisms of Development.

[50]  Ting Xie,et al.  decapentaplegic Is Essential for the Maintenance and Division of Germline Stem Cells in the Drosophila Ovary , 1998, Cell.

[51]  R. Lehmann,et al.  Regulation of zygotic gene expression in Drosophila primordial germ cells , 1998, Current Biology.

[52]  P. Macdonald,et al.  aubergine enhances oskar translation in the Drosophila ovary. , 1996, Development.

[53]  P. Ingham,et al.  hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. , 1996, Development.

[54]  A. Spradling,et al.  Identification and behavior of epithelial stem cells in the Drosophila ovary. , 1995, Development.

[55]  C. Berg,et al.  Homeless is required for RNA localization in Drosophila oogenesis and encodes a new member of the DE-H family of RNA-dependent ATPases. , 1995, Genes & development.

[56]  A. Bucheton,et al.  Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. , 1995, Genetics.

[57]  T. Schüpbach,et al.  The relationship between ovarian and embryonic dorsoventral patterning in Drosophila. , 1994, Development.

[58]  N. Perrimon,et al.  Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. , 1993, Development.

[59]  G. Rubin,et al.  Analysis of genetic mosaics in developing and adult Drosophila tissues. , 1993, Development.

[60]  M. Ashburner,et al.  A selective screen to recover chromosomal deletions and duplications in Drosophila melanogaster. , 1988, Genetics.

[61]  R. Paro,et al.  The molecular basis of I-R hybrid Dysgenesis in drosophila melanogaster: Identification, cloning, and properties of the I factor , 1984, Cell.

[62]  M. G. Kidwell Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[63]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[64]  G. Rubin,et al.  The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations , 1982, Cell.

[65]  J. H. Sang,et al.  The Drosophila Ovary , 1970 .

[66]  W. Theurkauf,et al.  Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. , 2007, Developmental cell.

[67]  W. Theurkauf,et al.  rasiRNAs, DNA damage, and embryonic axis specification. , 2006, Cold Spring Harbor symposia on quantitative biology.

[68]  A. Pélisson The I-R system of hybrid dysgenesis in Drosophila Melanogaster: Are I factor insertions responsible for the mutator effect of the I-R interaction? , 2004, Molecular and General Genetics MGG.

[69]  H. Lipshitz,et al.  Role of Adducin-like (hu-li tai shao) mRNA and protein localization in regulating cytoskeletal structure and function during Drosophila Oogenesis and early embryogenesis. , 1996, Developmental Genetics.

[70]  N. Perrimon,et al.  Autosomal P [ ovo D 1 ] dominant female-sterile insertions in Drosophila and their use in generating germline chimeras , 1996 .

[71]  R. King Ovarian Development in Drosophila Melanogaster , 1970 .