12 – Intermetallics for hydrogen storage

Publisher Summary Metal hydrides are important energy storage materials. In recent years, the hydrides have been classified into three main categories: (1) classical metal hydrides, (2) chemical hydrides, and (3) light metal complex hydrides. This chapter focuses on the classical metal hydrides their thermal, cyclic hydrogen charge–discharge behavior, and methodology of intrinsic and extrinsic testing to test long-term durability of the alloys, from a metallurgical engineer's perspective. The classical metal hydrides may be further classified as (1) elemental hydrides, such as vanadium or magnesium hydrides, (2) intermetallic hydrides, such as heavy metal hydrides AB5 (for example: LaNi5, AB2 (ZrFe2), AB (FeTi) alloy, and (3) amorphous hydrides, which are generally evolved from crystalline hydrides at higher temperatures and pressures (for example: GdFe2). The chapter summarizes the important contributions on the AB5/AB and elemental hydrides, emphasizes on the examples of microalloying in LaNi5- and FeTi-based intermetallic hydrides, and discusses elemental hydrides. It presents the classification of testing methods for durability of alloys/intermetallics and reports examples of intrinsic and extrinsic tests that include cycling and aging for AB5/AB and other alloys and more recent results on extrinsic tests on lightweight complex hydrides (imide-amide) that were cycled between Li2NH/LiNH2 phases. In general, a reasonable amount of intrinsic data is available, but extrinsic data are lacking; more research is needed for the hydrides to be used in practical applications.

[1]  I. Jacob,et al.  Hydrogen absorption in Zr(AlxB1−x)2 (BFe, Co) laves phase compounds , 1978 .

[2]  P. D. Goodell,et al.  Stability of rechargeable hydriding alloys during extended cycling , 1984 .

[3]  Hui‐Ming Cheng,et al.  Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture , 2006 .

[4]  G. Sandrock,et al.  Surface poisoning of LaNi5, FeTi and (Fe,Mn)Ti by O2, Co and H2O☆ , 1980 .

[5]  R. Baker,et al.  Studies of Phase Compositions and Hydrogen Diffusion in VHx* , 1993 .

[6]  E. Akiba,et al.  Trigonal SrAl2H2: the first Zintl phase hydride , 2000 .

[7]  J. Swisher,et al.  Hydrides versus competing options for storing hydrogen in energy systems , 1980 .

[8]  K. West,et al.  Intrinsic cycling degradation in LaNi5 and annealing procedures for re-forming the material , 1983 .

[9]  G. Sandrock,et al.  Cyclic life of metal hydrides with impure hydrogen: Overview and engineering considerations , 1984 .

[10]  G. Libowitz,et al.  The System Zirconium–Nickel and Hydrogen , 1958 .

[11]  G. Libowitz The nature and properties of transition metal hydrides , 1960 .

[12]  T. Masumoto,et al.  Crystalline to amorphous transformation in Laves phase GdFe2 induced by hydrogen absorption , 1988 .

[13]  C. Lartigue,et al.  Correlations between the structural properties, the stability and the hydrogen content of substituted LaNi5 compounds , 1985 .

[14]  Y. Yurum,et al.  Hydrogen energy system : production and utilization of hydrogen and future aspects , 1996 .

[15]  H. Yukawa,et al.  Alloying effects on the stability of vanadium hydrides , 2002 .

[16]  R. Bowman,et al.  Investigation of hydriding properties of LaNi4.8Sn0.2, LaNi4.27Sn0.24 and La0.9Gd0.1Ni5 after thermal cycling and aging , 1992 .

[17]  Jai-Young Lee,et al.  An investigation of the intrinsic degradation mechanism of LaNi5 by thermal desorption technique , 1988 .

[18]  Masahiko Morinaga,et al.  Alloying effects on the hydriding properties of vanadium at low hydrogen pressures , 2002 .

[19]  P. Rudman,et al.  Hydriding and dehydriding rates of the LaNi5-H system , 1983 .

[20]  T. Yoshino,et al.  Reactive mechanical grinding of ZrNi under various partial pressures of hydrogen , 1995 .

[21]  J. Rodríguez-Carvajal,et al.  Structural studies of LaNi4CoD6.11 and LaNi3.55Mn0.4Al0.3Co0.75D5.57 by means of neutron powder diffraction , 1995 .

[22]  T. Schober Vanadium-, Niobium- and Tantalum-Hydrogen , 1996 .

[23]  H. Schlesinger,et al.  Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry1 , 1947 .

[24]  B. Freeman,et al.  Characterizations of Prototype Sorption Cryocoolers for the Periodic Formation of Liquid and Solid Hydrogen , 1994 .

[25]  H. Wenzl Properties and applications of metal hydrides in energy conversion systems , 1982 .

[26]  T. Flanagan,et al.  Thermodynamics and isotope effects of the vanadium–hydrogen system using differential heat conduction calorimetry , 1990 .

[27]  S. Suda,et al.  Reaction kinetics of hydrogen-metal hydride systems , 1990 .

[28]  J. J. Reilly,et al.  Metal Hydride Storage for Mobile and Stationary Applications , 1975 .

[29]  A. Maeland,et al.  A NOVEL HYDRIDE OF VANADIUM1 , 1961 .

[30]  Dhanesh Chandra,et al.  Metal hydrides for vehicular applications: The state of the art , 2006 .

[31]  K.H.J. Buschow,et al.  Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation , 1974 .

[32]  Jai-Young Lee,et al.  THE INTRINSIC DEGRADATION PHENOMENA OF LANI5 AND LANI4.7AL0.3 BY TEMPERATURE INDUCED HYDROGEN ABSORPTION-DESORPTION CYCLING , 1987 .

[33]  J. Cantrell,et al.  Split Plateaux in the LaNi5–H System and the Effect of Sn Substitution on Splitting , 1997 .

[34]  G. Sandrock,et al.  Hydrogen storage in metal hydrides , 1980 .

[35]  C. B. Roberts,et al.  Preparation and properties of aluminum hydride , 1976 .

[36]  Jason Graetz,et al.  Decomposition kinetics of the AlH3 polymorphs. , 2005, The journal of physical chemistry. B.

[37]  Jai-Young Lee,et al.  Formation of the amorphous phase in Zr2Al by hydrogen absorption and the effects of titanium substitution on the amorphization behaviour , 1992 .

[38]  E. A. Gulbransen,et al.  THERMOCHEMICAL AND STRUCTURAL ASPECTS OF THE REACTION OF HYDROGEN WITH ALLOYS AND INTERMETALLIC COMPOUNDS OF ZIRCONIUM , 1966 .

[39]  K. Buschow Thermal stability and magnetic properties of amorphous Zr1−xFex alloys , 1981 .

[40]  Lee Jai-Young,et al.  The changes of hydrogenation properties induced by thermal cyclings in MmNi4.5Al0.5 and MmNi4.15Fe0.85 , 1987 .

[41]  K. Gross,et al.  In-situ X-ray diffraction study of the decomposition of NaAlH4 , 2000 .

[42]  J. J. Murray,et al.  Hydrides and deuterides of CaNi5 , 1982 .

[43]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[44]  S. Paglieri,et al.  Hydriding and structural characteristics of thermally cycled and cold-worked V–0.5 at.%C alloy , 2008 .

[45]  J. Reilly,et al.  Higher hydrides of vanadium and niobium , 1970 .

[46]  A. Maeland,et al.  Hydrides for energy storage , 1978 .

[47]  G. Sandrock,et al.  Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles , 2005 .

[48]  Robert C. Bowman,et al.  The effect of tin on the degradation of LaNi5−ySny metal hydrides during thermal cycling , 1995 .

[49]  J. R. Phillips,et al.  Evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers☆ , 1992 .

[50]  Jason Graetz,et al.  Nanoscale Energy Storage Materials Produced by Hydrogen‐Driven Metallurgical Reactions , 2005 .

[51]  E. Veleckis,et al.  THERMODYNAMIC PROPERTIES IN THE SYSTEMS VANADIUM--HYDROGEN, NIOBIUM-- HYDROGEN, AND TANTALUM--HYDROGEN. , 1969 .

[52]  J. Reilly Metal Hydride Technology* , 1979 .

[53]  T. Flanagan,et al.  Thermodynamic and degradation studies of LaNi4.8Sn0.2-H using isotherms and calorimetry , 1995 .

[54]  J. H. Wernick,et al.  Degradation of Lani5 hydrogen-absorbing material by cycling , 1980 .

[55]  D. Gruen,et al.  LaNi5-xAlx is a versatile alloy system for metal hydride applications , 1977, Nature.

[56]  F. D. Manchester,et al.  Phase diagrams of binary hydrogen alloys , 2000 .

[57]  Choong-Nyeon Park,et al.  Hysteresis in Metal Hydrides , 1988 .

[58]  Jai-Young Lee,et al.  Hydrogen-induced transformation to an amorphous state in the Laves phases Ce(Ru, M)2 (M Fe, Co, Ni) , 1993 .

[59]  Klaus Yvon,et al.  Complex Transition‐Metal Hydrides , 1999 .

[60]  D. Wexler,et al.  Formation and environmental stability of nanocrystalline and amorphous hydrides in the 2Mg–Fe mixture processed by controlled reactive mechanical alloying (CRMA) , 2004 .

[61]  N. Ohba,et al.  First-principles study on lithium amide for hydrogen storage , 2005 .

[62]  D. Richter,et al.  Fundamentals and properties of some Ti/Mn based laves phase hydrides , 1989 .

[63]  R. L. Cohen,et al.  Degradation of LaNi5 by temperature-induced cycling , 1980 .

[64]  F. Lynch Metal hydride practical applications , 1991 .

[65]  I. Jacob,et al.  Hydrogen sorption properties of some ab2 laves phase compounds , 1979 .

[66]  D. Gruen,et al.  The effect on hydrogen decomposition pressures of group IIIA and IVA element substitutions for Ni In LaNi5 alloys , 1978 .

[67]  P. Dantzer Static, dynamic and cycling studies on hydrogen in the intermetallics LaNi5 and LaNi4.77Al0.22 , 1987 .

[68]  A. Maeland Investigation of the Vanadium—Hydrogen System by X-Ray Diffraction Techniques1,2 , 1964 .

[69]  D. Gruen,et al.  The effect of aluminum additions on the structural and hydrogen absorption properties of AB5 alloys with particular reference to the LaNi5−xAlx ternary alloy system , 1979 .

[70]  D. Ross,et al.  Experimental Determination of Absorption-Desorption Isotherms by Computer-Controlled Gravimetric Analysis* , 1989 .

[71]  Zhengxiao Guo,et al.  Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage , 2004 .

[72]  H. Nozaki,et al.  Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction , 2005 .

[73]  M. Latroche,et al.  Structural Instability in R1−xNi2 Compounds and Their Hydrides (R = Y, Rare Earth)* , 1993 .

[74]  C. Lindensmith,et al.  Degradation behavior of LaNi5−xSnxHz (x=0.20–0.25) at elevated temperatures , 2002 .

[75]  S. Orimo,et al.  Revised Crystal Structure Model of Li2NH by Neutron Powder Diffraction , 2004, cond-mat/0406025.

[76]  E. Ronnebro,et al.  Towards a viable hydrogen storage system for transportation application , 2005 .

[77]  J. Reilly,et al.  Formation and properties of iron titanium hydride , 1974 .

[78]  R. Balasubramaniam,et al.  Hydriding properties of MmNi5 system with aluminium, manganese and tin substitutions , 1993 .

[79]  G. Sandrock A panoramic overview of hydrogen storage alloys from a gas reaction point of view , 1999 .

[80]  T. Masumoto,et al.  Hydrogen induced amorphization in RNi2 laves phases , 1987 .

[81]  R. Bowman Development of metal hydride beds for sorption cryocoolers in space applications , 2003 .

[82]  P. M. Golben,et al.  On the Disproportionation of Intermetallic Hydrides* , 1989 .

[83]  G. Alefeld,et al.  Hydrogen in Metals II , 1978 .

[84]  J. Pryde,et al.  Phase diagram and thermodynamic data for the hydrogen/vanadium system , 1972 .

[85]  T. Iwaki,et al.  Life properties of TiMn alloy hydrides and their hydrogen purification effect , 1983 .

[86]  K. Fujita,et al.  Ta-H, Nb-H, V-H系の平衡に関する研究 , 1979 .

[87]  L. Wade,et al.  Thermodynamic studies of the LaNi5−xSnx-H system from x = 0 to 0.5 , 1995 .

[88]  G. Sandrock,et al.  The IEA/DOE/SNL on-line hydride databases , 2001 .

[89]  H. Uchida,et al.  Current Problems in the Development and Application of Hydrogen Storage Materials* , 1989 .