Pollution profiles and physicochemical parameters in old uncontrolled landfills.

The long-term effectiveness of the geological barrier beneath municipal-waste landfills is a critical issue for soil and groundwater protection. This study examines natural clayey soils directly in contact with the waste deposited in three landfills over 12 years old in Spain. Several physicochemical and geological parameters were measured as a function of depth. Electrical conductivity (EC), water-soluble organic carbon (WSOC), Cl(-), NH(4)(+), Na(+) and exchangeable NH(4)(+) and Na(+) were used as parameters to measure the penetration of landfill leachate pollution. Mineralogy, specific surface area and cationic-exchange capacities were analyzed to characterize the materials under the landfills. A principal component analysis, combined with a Varimax rotation, was applied to the data to determine patterns of association between samples and variables not evident upon initial inspection. The main factors explaining the variation in the data are related to waste composition and local geology. Although leachates have been in contact with clays for long time periods (13-24 years), WSOC and EC fronts are attenuated at depths of 0.2-1.5m within the clay layer. Taking into account this depth of the clayey materials, these natural substrata (>45% illite-smectite-type sheet silicates) are suitable for confining leachate pollution and for complying with European legislation. This paper outlines the relevant differences in the clayey materials of the three landfills in which a diffusive flux attenuation capacity (A(c)) is defined as a function (1) of the rate of decrease of the parameters per meter of material, (2) of the age and area of the landfill and (3) of the quantity and quality of the wastes.

[1]  R. Dohrmann Cation exchange capacity methodology III: Correct exchangeable calcium determination of calcareous clays using a new silver–thiourea method , 2006 .

[2]  Marko Thiel,et al.  H=F , 2013 .

[3]  G. Heron,et al.  Biogeochemistry of landfill leachate plumes , 2001 .

[4]  Faïza Bergaya,et al.  Handbook of clay science , 2006 .

[5]  Robert M. Quigley,et al.  Heavy metal migration at a landfill site, Sarnia, Ontario, Canada—2: metal partitioning and geotechnical implications , 1988 .

[6]  A. Younsi,et al.  Environmental impact of an urban landfill on a coastal aquifer (El Jadida, Morocco) , 2004 .

[7]  Alistair Allen,et al.  Waste disposal and landfill: information needs. , 2006 .

[8]  T. Advocat,et al.  Alteration of a basaltic glass in an argillaceous medium:: The Salagou dike of the Lodève Permian Basin (France). Analogy with an underground nuclear waste repository , 2001 .

[9]  F. Çeçen,et al.  Impact of landfill leachate on the co-treatment of domestic wastewater , 2001, Biotechnology Letters.

[10]  H. Ehrig Water and element balances of landfills , 1989 .

[11]  N. Nandini,et al.  Leachate Characterization and Assessment of Groundwater Pollution Near Municipal Solid Waste Landfill Site , 2011 .

[12]  Dorota Kulikowska,et al.  The effect of landfill age on municipal leachate composition. , 2008, Bioresource technology.

[13]  Daniel R. Lynch,et al.  Models of Landfill Leaching: Moisture Flow and Inorganic Strength , 1982 .

[14]  Jin‐Yong Lee,et al.  Attenuation of landfill leachate at two uncontrolled landfills , 2006 .

[15]  Jan Środoń,et al.  Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations , 2001 .

[16]  John Chilton,et al.  Protecting Groundwater for Health: Managing the Quality of Drinking-water Sources , 2006 .

[17]  M. Zaïri,et al.  Rehabilitation of El Yahoudia dumping site, Tunisia. , 2004, Waste management.

[18]  A. Spagni,et al.  Nitrogen removal optimization in a sequencing batch reactor treating sanitary landfill leachate , 2007, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[19]  Robert M. Quigley,et al.  Clayey Barrier Systems for Waste Disposal Facilities , 1994 .

[20]  R. Rowe,et al.  The 14-year Performance of a Compacted Clay Liner used as Part of a Composite Liner System for a Leachate Lagoon , 2005 .

[21]  A. Zouboulis,et al.  A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece) , 2002 .

[22]  J. Rhoades Cation Exchange Capacity , 1982 .

[23]  M. Vayer,et al.  Cation and Anion Exchange , 2013 .

[24]  L Ej,et al.  agricultura, pesca y alimentación , 2008 .

[25]  S F Thornton,et al.  Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants , 2001, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[26]  M. Plötze,et al.  Suitability of minerals for controlled landfill and containment , 2000 .

[27]  J. R. Barton,et al.  Waste sorting and refuse-derived fuel production in Europe , 1985 .

[28]  T. B. Nolan,et al.  Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale , 1964 .

[29]  S. Kaufhold,et al.  Three new, quick CEC methods for determining the amounts of exchangeable calcium cations in calcareous clays , 2009 .

[30]  A. Méniai,et al.  Study of the retention of heavy metals by natural material used as liners in landfills , 2005 .

[31]  Aysun Özkan,et al.  Characterization of the Leachate in an Urban Landfill by Physicochemical Analysis and Solid Phase Microextraction-GC/MS , 2006, Environmental monitoring and assessment.

[32]  A. Ledin,et al.  Present and Long-Term Composition of MSW Landfill Leachate: A Review , 2002 .

[33]  Thomas Højlund Christensen,et al.  Redox zones of a landfill leachate pollution plume (Vejen, Denmark) , 1992 .

[34]  W. Huff X-ray Diffraction and the Identification and Analysis of Clay Minerals , 1990 .

[35]  P Moulin,et al.  Landfill leachate treatment: Review and opportunity. , 2008, Journal of hazardous materials.

[36]  J. Rintala,et al.  Occurrence and removal of organic pollutants in sewages and landfill leachates. , 2003, The Science of the total environment.

[37]  B. Andreo,et al.  Chemical composition of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain) , 1999 .

[38]  A. Sánchez-Chardi,et al.  Bioaccumulation of metals and effects of landfill pollution in small mammals. Part I. The greater white-toothed shrew, Crocidura russula. , 2007, Chemosphere.

[39]  R. Cattell,et al.  A general plasmode (No. 30-10-5-2) for factor analytic exercises and research. , 1967 .

[40]  D. Frascari,et al.  Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill. , 2004, Chemosphere.

[41]  M. Vayer,et al.  Chapter 12.10 Cation and Anion Exchange , 2006 .

[42]  S. Yuen,et al.  Observations of the impacts of some landfill leachates with clays , 2003, Environmental technology.

[43]  K. Joseph,et al.  Hazardous organic compounds in urban municipal solid waste from a developing country. , 2008, Journal of hazardous materials.

[44]  Alistair Allen,et al.  Containment landfills: the myth of sustainability , 2001 .

[45]  M. El-Fadel,et al.  Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. , 2002, Waste management.

[46]  P. Baccini,et al.  Water and Element Balances of Municipal Solid Waste Landfills , 1987 .

[47]  John A. Cherry,et al.  Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites , 1989 .

[48]  K. MacQuarrie,et al.  Migration of landfill leachate into a shallow clayey till in southern New Brunswick: a field and modelling investigation , 1997 .

[49]  Edward S. K. Chian,et al.  Sanitary Landfill Leachates and Their Leachate Treatment , 1976 .

[50]  Z. Salem,et al.  Evaluation of landfill leachate pollution and treatment , 2008 .

[51]  M. Drain Revista de Estudios Agro-sociales, Ministerio de Agricultura, pesca y alimentación, secretaria general técnica, Madrid, N°167 1/1994 , 1996 .

[52]  M. Meju,et al.  Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach , 2000 .

[53]  Robert M. Quigley,et al.  Hydraulic conductivity of contaminated natural clay directly below a domestic landfill , 1987 .

[54]  Michael O'Sullivan,et al.  Modeling Biogeochemical Processes in Leachate-Contaminated Soils: A Review , 2001 .

[55]  Amaya Lobo García de Cortázar,et al.  MODUELO 2: A new version of an integrated simulation model for municipal solid waste landfills , 2007, Environ. Model. Softw..

[56]  A. J.,et al.  Silica in landfill leachates : implications for clay mineral stabilities , 2003 .

[57]  J. Griffioen,et al.  Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume. , 2004, Journal of contaminant hydrology.

[58]  J. McCray,et al.  Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA , 2004 .

[59]  G. Heron,et al.  Attenuation of landfill leachate pollutants in aquifers , 1994 .

[60]  Peter Mostbauer Criteria selection for landfills: do we need a limitation on inorganic total content? , 2003, Waste management.

[61]  Ke-neng Zhang,et al.  Analysis on contaminants transport process through clay-solidified grouting curtain in MSW landfills , 2005 .

[62]  Poul Løgstrup Bjerg,et al.  Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source: landfill hydrology and leachate migration , 1998 .

[63]  Thomas Højlund Christensen,et al.  Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark) , 1992 .

[64]  B. Xi,et al.  Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. , 2008, Journal of environmental sciences.

[65]  J. Jankowski,et al.  Analysis of the distribution of inorganic constituents in a landfill leachate-contaminated aquifer: Astrolabe Park, Sydney, Australia , 2004 .

[66]  D. Wurster,et al.  Baseline studies of the clay minerals society source clays: Specific surface area by the Brunauer Emmett Teller (BET) method , 2006 .

[67]  M. Nanny,et al.  Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. , 2002, Water research.

[68]  D. Rosbjerg,et al.  Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark , 2002 .

[69]  Abdallah Ben Mammou,et al.  Impacts of the dumping site on the environment : Case of the Henchir El Yahoudia Site, Tunis, Tunisia , 2006 .

[70]  I. Clark,et al.  Compound Specific Isotopic Analysis (CSIA) of landfill leachate DOC components , 2005 .

[71]  R. Jonathan Fannin,et al.  Clayey barrier systems for waste disposal facilities , 1995 .

[72]  Pham Till Hang,et al.  Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies XVIII) , 1970 .

[73]  Xiaowu Tang,et al.  Investigation of migration of pollutant at the base of Suzhou Qizishan landfill without a liner system , 2009 .