Characterizing a new class of variability in GRS 1915+105 with simultaneous INTEGRAL/RXTE observations

We report on the analysis of 100 ks INTEGRAL observations of the Galactic microquasar GRS 1915+105. We focus on INTEGRAL Revolution number 48 when the source was found to exhibit a new type of variability as preliminarily reported in Hannikainen (2003, A&A, 411, L415). The variability pattern, which we name ξ, is characterized by a pulsing behaviour, consisting of a main pulse and a shorter, softer, and smaller amplitude precursor pulse, on a timescale of 5 min in the JEM-X 3-35 keV lightcurve. We also present simultaneous RXTE data. From a study of the individual RXTE/PCA pulse profiles we find that the rising phase is shorter and harder than the declining phase, which is opposite to what has been observed in other otherwise similar variability classes in this source. The position in the colour-colour diagram throughout the revolution corresponds to Stale A (Belloni et al. 2000, A&A, 355, 271) but not to any previously known variability class. We separated the INTEGRAL data into two subsets covering the maxima and minima of the pulses and fitted the resulting two broadband spectra with a hybrid thermal-non-thermal Comptonization model. The fits show the source to be in a soft state characterized by a strong disc component below ∼6 keV and Comptonization by both thermal and non-thermal electrons at higher energies.

[1]  USA,et al.  AU-Scale Synchrotron Jets and Superluminal Ejecta in GRS 1915+105 , 2000, astro-ph/0006086.

[2]  Juri Poutanen,et al.  Thermal Comptonization in GRS 1915+105 , 2001 .

[3]  P. H. Connell,et al.  The Spiros imaging software for the Integral SPI spectrometer , 2003 .

[4]  A. Fabian,et al.  High‐Energy Processes in Accreting Black Holes , 1998 .

[5]  S. Kitamoto,et al.  Large Hysteretic Behavior of Stellar Black Hole Candidate X-Ray Binaries , 1995 .

[6]  J. Rodriguez,et al.  SPECTRAL PROPERTIES OF LOW-FREQUENCY QUASI-PERIODIC OSCILLATIONS IN GRS 1915+105 , 2004, astro-ph/0407076.

[7]  A. J. Castro-Tirado,et al.  Identification of the donor in the X-ray binary GRS 1915+105 , 2001, astro-ph/0105467.

[8]  R. Staubert,et al.  The INTEGRAL Science Data Centre (ISDC) , 2001, astro-ph/0308047.

[9]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[10]  Georg Weidenspointner,et al.  SPI: The spectrometer aboard INTEGRAL , 2003 .

[11]  Juri Poutanen,et al.  The Two-Phase Pair Corona Model for Active Galactic Nuclei and X-ray Binaries: How to Obtain Exact Solutions , 1996 .

[12]  I. Mirabel,et al.  Repeated Relativistic Ejections in GRS 1915+105 , 1998, astro-ph/9808341.

[13]  C. Chapuis,et al.  On the optical extinction and distance of GRS 1915+105 , 2003, astro-ph/0310680.

[14]  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[15]  M. March,et al.  OMC: An Optical Monitoring Camera for INTEGRAL Instrument description and performance , 2003 .

[16]  T. Belloni,et al.  GRS 1915+105 and the Disc-Jet Coupling in Accreting Black Hole Systems , 2004 .

[17]  Shunji Kitamoto,et al.  GX 339—4: the distance, state transitions, hysteresis and spectral correlations , 2004, astro-ph/0402380.

[18]  G. Di Cocco,et al.  The INTEGRAL mission , 2003 .

[19]  Jochen Greiner,et al.  RXTE Observations of QPOs in the Black Hole Candidate GRS 1915+105 , 1997 .

[20]  Paolo S. Coppi,et al.  Time-dependent models of magnetized pair plasmas , 1992 .

[21]  M. Rouger,et al.  ISGRI: The INTEGRAL soft gamma-ray imager , 2003, astro-ph/0310362.

[22]  F. Takahara,et al.  On the Spectral Hardening Factor of the X-Ray Emission from Accretion Disks in Black Hole Candidates , 1995 .

[23]  J. Poutanen,et al.  Unification of Spectral States of Accreting Black Holes , 1997, astro-ph/9711316.

[24]  F. Frontera,et al.  High-energy observations of the state transition of the X-ray nova and black hole candidate XTE J1720-318 , 2004, astro-ph/0407308.

[25]  B. Ramsey,et al.  IBIS: The Imager on-board INTEGRAL , 2003 .

[26]  M. Tagger,et al.  Accretion-ejection instability and QPO in black hole binaries I. Observations , 2002 .

[27]  E. T. Harlaftis,et al.  The rotational broadening and the mass of the donor star of GRS 1915+105 , 2004 .

[28]  A. Merloni,et al.  On the interpretation of the multicolour disc model for black hole candidates , 2000 .

[29]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[30]  A. Zdziarski,et al.  Angle-dependent Compton reflection of X-rays and gamma-rays , 1995 .

[31]  P. A. Jensen,et al.  JEM-X: The X-ray monitor aboard INTEGRAL ? , 2003 .

[32]  V. Dhawan,et al.  Simultaneous multi-wavelength observations of GRS 1915+105 ? , 2003, astro-ph/0309091.

[33]  J. Rodriguez,et al.  Unveiling the nature of the high energy source IGR J19140+0951 , 2004, astro-ph/0412555.

[34]  R. P. Fender,et al.  MERLIN observations of relativistic ejections from GRS 1915+105 , 1998, astro-ph/9812150.

[35]  M. Tagger,et al.  MAGNETIC FLOODS: A SCENARIO FOR THE VARIABILITY OF THE MICROQUASAR GRS 1915+105 , 2004, astro-ph/0401539.

[36]  Keith A. Arnaud,et al.  An ionized accretion disk in Cygnus X-1 , 1992 .