HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone

Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required.

[1]  Takafumi D. Yamamoto,et al.  A nearly water-saturated mantle transition zone inferred from mineral viscosity , 2017, Science Advances.

[2]  Malcolm C. A. White,et al.  Model Update May 2016: Upper‐Mantle Heterogeneity beneath North America from Travel‐Time Tomography with Global and USArray Data , 2017 .

[3]  Amir Khan,et al.  Uncertainty of mantle geophysical properties computed from phase equilibrium models , 2016 .

[4]  Zhen Liu,et al.  Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone , 2016 .

[5]  Xinyang Li,et al.  Effect of hydration on the elasticity of mantle minerals and its geophysical implications , 2016, Science China Earth Sciences.

[6]  Y. Meng,et al.  Comparative compressibility of hydrous wadsleyite and ringwoodite: Effect of H2O and implications for detecting water in the transition zone , 2015 .

[7]  R. Liebermann,et al.  Elastic wave velocities of peridotite KLB‐1 at mantle pressures and implications for mantle velocity modeling , 2015 .

[8]  D. Wiens,et al.  P and S velocity tomography of the Mariana subduction system from a combined land‐sea seismic deployment , 2015 .

[9]  D. Wiens,et al.  The mantle transition zone beneath West Antarctica: Seismic evidence for hydration and thermal upwellings , 2015 .

[10]  J. Trampert,et al.  Seismic signature of a hydrous mantle transition zone , 2014 .

[11]  Barbara Romanowicz,et al.  Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography , 2014 .

[12]  Brandon Schmandt,et al.  P and S wave tomography of the mantle beneath the United States , 2014 .

[13]  S. Lebedev,et al.  Imaging the North American continent using waveform inversion of global and USArray data , 2014 .

[14]  T. Becker,et al.  Dehydration melting at the top of the lower mantle , 2014, Science.

[15]  F. Brenker,et al.  Hydrous mantle transition zone indicated by ringwoodite included within diamond , 2014, Nature.

[16]  Timo Heister,et al.  BurnMan: A lower mantle mineral physics toolkit , 2013 .

[17]  R. Powell,et al.  New Thermodynamic Models and Calculated Phase Equilibria in NCFMAS for Basic and Ultrabasic Compositions through the Transition Zone into the Uppermost Lower Mantle , 2013 .

[18]  J. Revenaugh,et al.  A Water‐Rich Transition Zone Beneath the Eastern United States and Gulf of Mexico from Multiple ScS Reverberations , 2013 .

[19]  S. Jacobsen,et al.  Effect of Water on the Sound Velocities of Ringwoodite in the Transition Zone , 2013 .

[20]  S. Lee,et al.  Surface Wave Tomography Applied to the North American Upper Mantle , 2013 .

[21]  S. Pascarelli,et al.  Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: A XANES, Mössbauer, and SIMS study , 2012 .

[22]  T. Duffy,et al.  Sound velocities of hydrous ringwoodite to 16 GPa and 673 K , 2012 .

[23]  Lars Stixrude,et al.  Geophysics of Chemical Heterogeneity in the Mantle , 2012 .

[24]  J. Townsend,et al.  Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O , 2012 .

[25]  M. Hirschmann,et al.  H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone , 2012, Contributions to Mineralogy and Petrology.

[26]  T. Duffy,et al.  Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa , 2011 .

[27]  Lars Stixrude,et al.  Thermodynamics of mantle minerals - II. Phase equilibria , 2011 .

[28]  S. Karato,et al.  Water distribution across the mantle transition zone and its implications for global material circulation , 2011 .

[29]  H. Yurimoto,et al.  Water partitioning in the Earth's mantle , 2010 .

[30]  M. Brudzinski,et al.  Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere , 2010, Nature.

[31]  Michael G. Davis,et al.  The temperature dependence of the elasticity of Fe-bearing wadsleyite , 2010 .

[32]  T. Duffy,et al.  Velocity crossover between hydrous and anhydrous forsterite at high pressures , 2010 .

[33]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[34]  Heather Bedle,et al.  S velocity variations beneath North America , 2009 .

[35]  T. Duffy,et al.  Correction to “Effects of hydration on the elastic properties of olivine” , 2009 .

[36]  Yanbin Wang,et al.  Elasticity of (Mg 0.87Fe 0.13) 2SiO 4 wadsleyite to 12 GPa and 1073 K , 2009 .

[37]  T. Duffy,et al.  Elasticity of hydrous wadsleyite to 12 GPa: Implications for Earth's transition zone , 2008 .

[38]  Wenbo Xu,et al.  The effect of bulk composition and temperature on mantle seismic structure , 2008 .

[39]  Liping Wang,et al.  Compressional and shear wave velocities of Fe2SiO4 spinel at high pressure and high temperature , 2008 .

[40]  T. Duffy,et al.  Effects of hydration on the elastic properties of olivine , 2008 .

[41]  W. Griffin,et al.  Integrated geophysical‐petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications , 2008 .

[42]  T. Irifune,et al.  Elastic wave velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P–T conditions of the mantle transition region , 2008 .

[43]  Michael G. Davis,et al.  The elastic properties of β-Mg2SiO4 from 295 to 660 K and implications on the composition of Earth's upper mantle , 2007 .

[44]  R. Liebermann,et al.  Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures , 2007, Proceedings of the National Academy of Sciences.

[45]  D. Frost,et al.  Experimental determination of the effect of H2O on the 410-km seismic discontinuity , 2007 .

[46]  Josnpn R. Svrrnr A crystallographic model for hydrous wadsleyite ( p-MgrSiOn ) : An ocean in the Earth ' s interior ? , 2007 .

[47]  Josnpn R. Srvrvrn p-MgrSiOo : A potential host for water in the mantle ? , 2007 .

[48]  R. Liebermann,et al.  The effect of iron on the elastic properties of ringwoodite at high pressure , 2006 .

[49]  G. Gaetani,et al.  Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions , 2006 .

[50]  S. Sinogeikin,et al.  Elastic properties of hydrous ringwoodite at high‐pressure conditions , 2006 .

[51]  M. Hirschmann Water, Melting, and the Deep Earth H 2 O Cycle , 2006 .

[52]  D. Frost The Stability of Hydrous Mantle Phases , 2006 .

[53]  S. Lee,et al.  Earth's deep water cycle , 2006 .

[54]  S. Jacobsen Effect of Water on the Equation of State of Nominally Anhydrous Minerals , 2006 .

[55]  T. Komabayashi,et al.  Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35 GPa, 1600 °C: Implications for water circulation in the Earth's deep mantle , 2005 .

[56]  D. Yuen,et al.  The role of water in connecting past and future episodes of subduction , 2005 .

[57]  Baosheng Li,et al.  Elasticity of San Carlos olivine to 8 GPa and 1073 K , 2005 .

[58]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[59]  M. Hirschmann,et al.  Storage capacity of H2O in nominally anhydrous minerals in the upper mantle , 2005 .

[60]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[61]  H. Keppler,et al.  Pressure and temperature-dependence of water solubility in Fe-free wadsleyite , 2005 .

[62]  N. Bolfan-Casanova Water in the Earth’s mantle , 2005, Mineralogical Magazine.

[63]  I. Ohno,et al.  Temperature dependence of the elastic moduli of ringwoodite , 2005 .

[64]  T. Duffy,et al.  Single-crystal elasticity of fayalite to 12 GPa , 2004 .

[65]  R. Liebermann,et al.  Ultrasonic measurements of the sound velocities in polycrystalline San Carlos olivine in multi-anvil, high-pressure apparatus , 2004 .

[66]  T. Kondo,et al.  Water transport into the deep mantle and formation of a hydrous transition zone , 2004 .

[67]  D. Frost,et al.  High pressure crystal chemistry of hydrous ringwoodite and water in the Earth’s interior , 2004 .

[68]  Hendrik Jan van Heijst,et al.  Global transition zone tomography , 2004 .

[69]  I. Klatzo,et al.  The effects of 5-minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus , 2004, Acta Neuropathologica.

[70]  Baosheng Li Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa , 2004 .

[71]  S. Sinogeikin,et al.  Elastic properties of hydrous ringwoodite , 2003 .

[72]  D. Giardini,et al.  Inferring upper-mantle temperatures from seismic velocities , 2003 .

[73]  F. Marone,et al.  Seismic Evidence for Water Deep in Earth's Upper Mantle , 2003, Science.

[74]  S. Sinogeikin,et al.  Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity , 2003 .

[75]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[76]  Jiuhua Chen,et al.  Effect of water on olivine‐wadsleyite phase boundary in the (Mg, Fe)2SiO4 system , 2002 .

[77]  S. Lee,et al.  Thermal structure of the North American uppermost mantle inferred from seismic tomography , 2002 .

[78]  D. Frost,et al.  The effect of water on the 410‐km discontinuity: An experimental study , 2002 .

[79]  D. Weidner,et al.  P-V-VP-VS-T MEASUREMENTS ON WADSLEYITE TO 7 GPA AND 873 K: IMPLICATIONS FOR THE 410-KM SEISMIC DISCONTINUITY , 2001 .

[80]  K. Litasov,et al.  Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle , 2001 .

[81]  Pierre Vacher,et al.  Shallow mantle temperatures under Europe from P and S wave tomography , 2000 .

[82]  R. Liebermann,et al.  Sound velocities of wadsleyite b-(Mg0.88Fe0.12)2SiO4 to 10 GPa , 2000 .

[83]  S. Sinogeikin,et al.  Sound velocities and elastic properties of g-Mg2SiO4 to 873 K by Brillouin spectroscopy , 2000 .

[84]  S. Ono Water in the Earth's Mantle , 1999 .

[85]  S. Sinogeikin,et al.  Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite , 1998 .

[86]  H. Mao,et al.  Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa , 1998 .

[87]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[88]  R. Jeanloz,et al.  Elasticity of natural majorite and ringwoodite from the catherwood meteorite , 1997 .

[89]  G. Nolet,et al.  Upper mantle S velocity structure of North America , 1997 .

[90]  J. M. Brown,et al.  The elastic constants of San Carlos olivine to 17 GPa , 1997 .

[91]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[92]  H. Mao,et al.  Single-crystal elasticity of β-Mg2SiO4 to the pressure of the 410 km seismic discontinuity in the Earth's mantle , 1997 .

[93]  H. Mao,et al.  Sound velocity and elasticity of single‐crystal forsterite to 16 GPa , 1996 .

[94]  H. Keppler,et al.  Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4 , 1996 .

[95]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[96]  B. Wood The Effect of H2O on the 410-Kilometer Seismic Discontinuity , 1995, Science.

[97]  J. Smyth A crystallographic model for hydrous wadsleyite (beta -Mg 2 SiO 4 ); an ocean in the Earth's interior? , 1994 .

[98]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[99]  T. Mcnelley,et al.  Temperature dependence of , 1993, Metallurgical and Materials Transactions A.

[100]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[101]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[102]  L. Slutsky,et al.  Sound Velocities in Olivine at Earth Mantle Pressures , 1993, Science.

[103]  D. G. Isaak High‐temperature elasticity of iron‐bearing olivines , 1992 .

[104]  C. Bina,et al.  CALCULATION OF ELASTIC PROPERTIES FROM THERMODYNAMIC EQUATION OF STATE PRINCIPLES , 1992 .

[105]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[106]  S. Karato,et al.  Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .

[107]  Richard H. Byrd,et al.  Algorithm 676: ODRPACK: software for weighted orthogonal distance regression , 1989, TOMS.

[108]  S. Webb The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa , 1989 .

[109]  J. Smyth beta -Mg 2 SiO 4 ; a potential host for water in the mantle? , 1987 .

[110]  A. E. Ringwood,et al.  Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab , 1987 .

[111]  D. L. Anderson,et al.  Transition region of the Earth's upper mantle , 1986, Nature.

[112]  D. Weidner,et al.  Mantle Model Based on Measured Physical Properties of Minerals , 1986 .

[113]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[114]  D. Anderson,et al.  A model of dislocation-controlled rheology for the mantle , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[115]  B. Romanowicz Seismic structure of the upper mantle beneath the United States by three‐dimensional inversion of body wave arrival times , 1979 .

[116]  J. Watt,et al.  The Elastic Properties of Composite Materials , 1976 .

[117]  Adam M. Dziewonski,et al.  Parametrically simple earth models consistent with geophysical data , 1975 .

[118]  Mineo Kumazawa,et al.  Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite , 1969 .

[119]  G. R. Barsch,et al.  Elastic constants of single‐crystal forsterite as a function of temperature and pressure , 1969 .

[120]  A. E. Ringwood,et al.  High-pressure reconnaissance investigations in the system Mg2SiO4 - MgO - H2O , 1967 .

[121]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .